| Address | Department of Mathematics,
17 University Ave. Ste 1701 San Juan PR, 00925-2537 |
|---|---|
| Office | NCN II C-116 |
| Hours | Awaiting data |
| Actual Program | MATE 6881 (0U1) MJ 1200-0220PM MATE 4031 (0U1) MJ 0230-0350PM CN-354 |
| Telephone | (787) 764-0000 88262 |
| moc.oohay@ebucnaujnas |
Education
PhD, University of California, Berkeley, 1981
Research Interests
Geometría Convexa y Discreta, Lógica Umbral, Optimización en Hipercubos
Selected Publications
- Emamy-K., M.R., Meléndez Ríos, G.A. (2024). On a Convex Geometric Connection to Threshold Logic . In: Hoffman, F., Holliday, S., Rosen, Z., Shahrokhi, F., Wierman, J. (eds) Combinatorics, Graph Theory and Computing. SEICCGTC 2021. Springer Proceedings in Mathematics & Statistics, vol 448. Springer, Cham. https://doi.org/10.1007/978-3-031-52969-6_9
- M. Reza Emamy-K., Bahman Kalantari, Tatiana Correa, The Edge-Vertex Inequality in a Planar Graph and a Bipartition for the Class of all Planar Graphs. , Pi Mu Epsilon Journal, Issue:15:8, Spring 2023, pages 485-491
- M. R. Emamy-K., and R. Arce-Nazario, On the Cut Number Problem for the 4 and 5 Cubes, Special Issue of Discrete Applied Math., vol. 303, Nov. 2021
- M. R. Emamy-K., R. Arce-Nazario, L. J. Uribe, The 5-cube Cut Number Problem: A Short Proof for a Basic Lemma., Congressus Numerantium, Volume 232 (2019), pp. 153-164.
- M. R. Emamy-K., "A Lower Bound Theorem for Polytope Pairs," JCT, Ser. A, vol 38, no 2 (1985), 187- 191. Math. Reviews (D. Barnette)86f:53012.
- M. R. Emamy-K., "On the Covering Cuts of the d-cube, dleq 5," Disc. Math., 68 (1998), 191-196.
- M. Reza Emamy-K., Geometry of cut-complexes and threshold logic, J. Geom. 65 (1999), No. 1-2, 91-100.
- Reza Emamy (with M. Ziegler), New Bounds Far Hypercube Slicing Numbers, Discrete Mathematics and Theoretical Computer Science, DM-TCS (2001) 155-163.
- M. R. Emamy-K., A new elementary proof for an old theorem on convex sets, Congressus Numerantium 170 (2004), 107-112.
Grants and Awards
Additional Information