UNIVERSITY OF PUERTO RICO RIO PIEDRAS CAMPUS FACULTY OF NATURAL SCIENCES DEPARTMENT OF MATHEMATICS

On K_4 -ultrahomogeneous and $\{K_{2s}, T_{ts,t}\}_{K_2}$ -homogeneous graphs based on ordered pencils of binary projective spaces

Dr. Italo J. Dejter University of Puerto Rico Rio Piedras, PR 00936-8377 italo.dejter@gmail.com

Abstract

Let C be a class of graphs. A definition of C-homogeneous graph G is given that fulfills the absence of a fitting generalization of C-ultrahomogeneous graph by considering each induced subgraph of G in C anchored by means of an arc. Let $2 < r \in \mathbb{Z}$, $\sigma \in (0, r-1) \cap \mathbb{Z}$, $t = 2^{\sigma+1} - 1$ and $s = 2^{r-\sigma-1}$. A construction of non-line-graphical connected $\{K_{2s}, T_{ts,t}\}_{K_2}$ -homogeneous graphs G (meaning $C = \{K_{2s}, T_{ts,t}\}$ with each edge in G shared by exactly one copy of the complete subgraph K_{2s} and one copy of the Turán graph $T_{ts,t}$) is shown to yield an infinity of such graphs in terms of configurations of points and lines, one per pair (r, σ) . Moreover, if $r - \sigma = 2$, then G is K_4 -ultrahomogeneous with order $(2^r - 1)(2^r - 2)$ and number $4(2^{\sigma-1})$ of edge-disjoint copies of K_4 incident to each vertex.

> Wednesday, October 10, 2012 11:30 am - 12:30 pm A-207