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Motivation

The book “An Essay on the Principle of Population” was first
published anonymously in 1798, but the author was soon identified
as Thomas Robert Malthus (1766-1834).

It predicted that population would increase geometrically, doubling
every 25 years, but food production would only grow arithmetically,
which would result in famine and starvation, unless births were
controlled (the Malthusian trap).

Malthus’ views became influential, and controversial, across
economic, political, social and scientific thought.
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Motivation

Malthus estimated population collapse to occur in 1880
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Motivation

The book’s 6th edition (1826) was independently cited as a key influence
by both Charles Darwin and Alfred Russel Wallace in developing the

theory of natural selection.
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Motivation

Was Malthus right?

Some economists contend that since the industrial revolution, mankind
has broken out of the trap.
But...

“A finite world can support only a finite population”.
“The Tragedy of the Commons,” Garrett Hardin, ecologist, 1968.
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Motivation

Nowadays Population Dynamics is a fertile area in
Mathematical Biology, Social Sciences,...
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Age-dependent di↵usion model

A fundamental model
Morton E. Gurtin, A System of Equations for Age-dependent Population Di↵usion, J.
theor. Biol. (1973), 40, 389-392. (Letters to the Editor).

⇢t + ⇢a ��⇢+ �⇢ = 0

with
⇢ = ⇢(x , a, t) = population density

a = age

� = �(a) = a = death rate at age a
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Age-dependent di↵usion model

Operator splitting
Hyperbolic-parabolic mix

⇢
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+ ⇢
a

��
x

⇢ = 0
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+ ⇢
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= 0
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��
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A second hidden parabolic equation as the generator of the semigroup

⇢
a

��
x

⇢ = 0.
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Age-dependent di↵usion model

Age-time transport

⇢t + ⇢a = 0

⇢ = ⇢0(a� t)

E. Zuazua (DeustoTech & UAM ) Population dynamics control UPR, December 2018 12 / 48



Age-dependent di↵usion model

Space-time di↵usion

⇢t ��x⇢ = 0

⇢(·, t) = G (·, t) ⇤
x

⇢0(·)
G (x , t) = (4⇡t)�n/2 exp(�|x |2/4t).
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Age-dependent di↵usion model

Overall

⇢t + ⇢a ��x⇢ = 0

⇢(x , a, t) = G (·, t) ⇤
x

⇢0(·, a� t)

Smoothing in the space variable x but lack of regularising e↵ect in the age
variable a.
Lack of hypocoercivity/hypoellipticity due to commutativity of the two
generators @

a

and ��
x

, in contrast with the classical Kolmogorov
equation:

f
t

� f
vv

+ vf
x

= 0.
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Age-dependent di↵usion model
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Age-dependent di↵usion model

Semigroup generation
W. Huyer, Semigroup formulation and approximation of a linear age-dependent
population problem with spatial di↵usion, Semigroup Forum, 49 (1994) 99–114.

With suitable boundary conditions it generates a semigroup in
H = L2((0, a†)⇥ ⌦), ⌦ being the bounded domain of Rn for the space
variable x , and a† > 0 the maximal age of the population:

8
>>>><

>>>>:

@⇢
@t +

@⇢
@a ��

x

⇢+ µ(a)⇢ = 0 in (0,1)⇥ (0, a†)⇥ ⌦,

⇢(x , 0, t) =
R
a†
0 �(a)⇢(x , a, t) da (t, x) 2 (0,1)⇥ ⌦

@⇢
@⌫ = 0 (t, a, x) 2 (0,1)⇥ (0, a†)⇥ @⌦,

⇢(x , a, 0) = ⇢0(x , a) (a, x) 2 (0, a†)⇥ ⌦.

Fertility and mortality rates � and µ are such that:

(H1) � 2 L1(0, a†), � > 0 for almost every a 2 (0, a†).

(H2) µ 2 L1[0, a⇤] for every a⇤ 2 (0, a†), µ > 0 a.e.

(H3)
R
a†
0 µ(a) da = +1 (vanishing of the survival probability at the
maximal age).
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Age-dependent di↵usion model

Nonlocal model

@⇢

@t
+

@⇢

@a
��

x

⇢+ µ(a)⇢ = 0

⇢(x , 0, t) =

Z
a†

0
�(a)⇢(x , a, t) da.

Mortality-Fertility profiles
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Age-dependent di↵usion model

Dissipativity

•L1
d

dt

Z
a†

0

Z

⌦
⇢(x , a, t)dxda

�

= �
Z

a†

0

Z

⌦
µ(a)⇢(x , a, t)dxda+

Z
a†

0

Z

⌦
�(a)⇢(x , a, t) dxda.

•L2

d

dt

Z
a†

0

Z

⌦
⇢2(x , a, t)dxda

�
= �

Z
a†

0

Z

⌦
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x

⇢(x , a, t)|2dxda

�
Z

a†

0

Z

⌦
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Z
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���
Z
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0
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���
2
dx .
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Observation and Control

The control problem

8
>>>><

>>>>:

@⇢
@t +

@⇢
@a ��

x

⇢+ µ(a)⇢ = u(x , a, t)�(a1,a2)⇥! in ⌦⇥ (0, a†)⇥ (0,1)

⇢(x , 0, t) =
R
a†
0 �(a)⇢(x , a, t) da in ⌦⇥ (0,1)

@⇢
@⌫ = 0 in (0,1)⇥ @⌦⇥ (0, a†)

⇢(x , a, 0) = ⇢0(x , a) in ⌦⇥ (0, a†).

Here:

1 u(x , a, t) is the control;

2 (a1, a2)⇥ ! ⇢ (0, a†)⇥ ⌦ is the support of the control

3 Goal : To drive the solution to equilibrium at a given final time T > 0

⇢(·, ·,T ) ⌘ 0.
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Observation and Control

Some references related to control

1 B. Ainseba and S. Aniţa, Internal exact controllability of the linear

population dynamics with di↵usion, Electron. JDE, (2004).
2 V. Barbu, M. Iannelli, and M. Martcheva, On the controllability of the

Lotka-McKendrick model of population dynamics, JMAA, (2001).
3 N. Hegoburu, P. Magal, and M. Tucsnak, Controllability with positivity

constraints of the Lotka- McKendrick system. 2017.
4 P. Martinez, J.-P. Raymond, and J. Vancostenoble, Regional null

controllability of a linearized Crocco-type equation, SICON, (2003).
5 O. Traore, Null controllability of a nonlinear population dynamics problem,

Int. J. Math. Math. Sci., (2006).
6 G. F. Webb, Theory of nonlinear age-dependent population dynamics, vol.

89 of Monographs and Text- books in Pure and Applied Mathematics,

Marcel Dekker, Inc., New York, 1985.
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Observation and Control

The dual observation problem

Consider the adjoint system
8
>>>><

>>>>:

@q
@t �

@q
@a ��q � �(a)q(x , 0, t) + µ(a)q = 0, ⌦⇥ (0, a†)⇥ (0,T )

q(t, a†, x) = 0, ⌦⇥ (0,T )

@q/@⌫ = 0, @⌦⇥ (0, a†)⇥ (0,T )

q(x , a, 0) = q0(x , a), ⌦⇥ (0, a†).

The question is whether:

Z
a†

0

Z

⌦
q2(x , a,T ) dx da 6 C

T

Z
T

0

Z
a2

a1

Z

!
q2(x , a, t) dx da dt,

the observation being made in the subset

(a1, a2)⇥ ! ⇢ (0, a†)⇥ ⌦.
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Observation and Control

Hyperbolic control

A hyperbolic system is controllable/observable if and only if the control is
e↵ective in each characteristic of the system1

1Generalised to second order wave equations by Bardos, Lebeau and Rauch in 1988
through the so-called Geometric Control Condition (GCC)
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Observation and Control

Parabolic control

Heat-like equations are controllable from any open subset of the space
subdomain, thanks to the infinite velocity of propagation, and the radial
nature of di↵usion.

Actual proofs use Carleman inequalities developed by Fursikov-Imanuvilov
and Lebeau-Robbiano, among others, in the 90’s.
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Observation and Control

The main result: Observability/controllability

Theorem. Controllability/observability holds with controls/observations in

(a1, a2)⇥ ! ⇢ (0, a†)⇥ ⌦

provided the fertility profile �(a) is such that

�(a) ⌘ 0, in (0, a1 + �)

and the time T is large enough such that

T > a1 + (a† � a2).

Furthermore, when the initial state and target are positive, the trajectory
may be kept non-negative if the control time T is large enough.
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Observation and Control

Proof. Observability

@q

@t
� @q

@a
��q � �(a)q(x , 0, t) + µ(a)q = 0

Step 1. Since
�(a) ⌘ 0, in (0, a1 + �)

we can use the simplified equation

@q

@t
� @q

@a
��q + µ(a)q = 0

and deduce that
Z

T

a1

Z

!
|q(x , 0, t)|2dxdt  C

T

Z
T

0

Z
a2

a1

Z

!
q2(x , a, t) dx da dt.
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Observation and Control

Proof. Step 2. The case � ⌘ 0.

For
t > a1

the term in the equation involving the fertility profile � has been estimated
and can be ignored. One is left with the reduced equation

@q

@t
� @q

@a
��q + µ(a)q = 0.

We start again at t = t1.In this second phase observability requires the
extra characteristic time:

T > a† � a2.

This requires propagation along characteristics and the well-known
estimates for the control/observation of the heat equation.
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Observation and Control

Graphical proof

a2 � "

0 a1 a2
a†

t = a1 + a† � a2

t = ⌧

t > a† � a

t < a† � a

⌧ = a1
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Observation and Control

Change of variables

Equation
@q

@t
� @q

@a
��q + µ(a)q = 0

is transformed into
@⌘

@s
��⌘ + µ(b � s)⌘ = 0

by the change of variables

⌘(x , s) = q(x , b � s, s)

where the parameter b is chosen according to the inequality under
consideration.
This allows applying the existing observability inequalities for heat-like
equations to our model.

E. Zuazua (DeustoTech & UAM ) Population dynamics control UPR, December 2018 29 / 48



Positivity of controlled trajectories
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Positivity of controlled trajectories

Positivity of controlled trajectories

In the context of population dynamics, the state ⇢ refers to a density of
population.
Thus, in principle, even if some slight overshoots can be admissible and
even have some physical interpretation, one expects the trajectories to be
always non-negative.
The following questions arises then:

If the initial state and the target are positive sates, can the controlled
trajectory be guaranteed to be non-negative all along the control time
horizon?

⇢ � 0?
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Positivity of controlled trajectories

Optimal L2 controls for heat equations do not fulfill natural
constraints: Numerical simulations, back to Glowinski and
Lions in the 80’s and 90’s
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t
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This is so since controls are just restrictions to ! of solutions of the
adjoint system

�'
t

��' = 0.
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Positivity of controlled trajectories

Bad news

1 Controls oscillate dramatically as time approaches the final time.

2 This produces oscillations in the state too.

3 This e↵ect is further accentuated when the time horizon T is short,
as T ! 0.

4 This makes the controllability results of little use in many contexts in
which the state represents a density (population dynamics).

5 This phenomenon appears systematically in all models of
reaction-di↵usion type.
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Positivity of controlled trajectories

All these results do not seem to be respectful with the classical comparison
principle for the solutions of the heat equation.

One expects to control temperature form 19C to 24C (or viceversa),
keeping temperature 19  ⌧  24.

This intuition is false. But we can guarantee that, if ⌧ >> 1 then:

18.9C  ⌧  24.1C

E. Zuazua (DeustoTech & UAM ) Population dynamics control UPR, December 2018 34 / 48



Positivity of controlled trajectories

Long time horizon control for parabolic equations

Theorem

If the target ⇢1 is a positive steady state, there exists T a large enough
time and a non-negative boundary control u � 0 s. t. ⇢(T , ·) = ⇢1.
Further, if ⇢0 � 0, then, by the comparison principle, ⇢ � 0.

Theorem

The minimal time is positive, i. e. there is a positive waiting time to
reach the target under the non-negativity constraint:

Tmin > 0.

And, there is a non-negative measure that assures, as control, that the
target is achieved in the minimal time Tmin.

2 3
2J. Lohéac, E. Trélat and E. Z., M3AS, 27 (2017), no. 9, 1587-1644.
3D. Pighin, E. Z., MCRF & arXiv:1711.07678
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Positivity of controlled trajectories

The key idea

If ⇢1 is the target steady state, the control can be kept u � ⇢1 � � if the
time interval is long enough ! 1 ad � ! 0. Thus u � 0 if ⇢1 > 0.

4

t0

y
iterative procedure

1 2 3 4 5

y1

y0

4J.-M. Coron, E. Trélat, Global Steady-State Controllability of One-Dimensional
Semilinear Heat Equations, SICON 43(2), 549–569.
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Positivity of controlled trajectories

δε

control

t0

u

0

y

t

ε

state

y0

y1
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Positivity of controlled trajectories

Back to population dynamics

The same results hold for the age-dependent di↵usive population dynamics
model.
The key is to obtain L1-controls of small amplitude, which, by duality,
requires to prove an observability inequality with measurements done in L1.
In other words, one has to improve the inequality

Z
a†

0

Z

⌦
q2(x , a,T ) dx da 6 C

T

Z
T

0

Z
a2

a1

Z

!
q2(x , a, t) dx da dt,

to

h Z
a†

0

���
Z

⌦
q2(x , a,T ) dx

���
1/2

da
i2

6 C
T

����
Z

T

0

Z
a2

a1

Z

!
|q(x , a, t)| dx da dt

����
2

.

And this can be done since both the estimates based on transport along
characteristics and in the di↵usion process hold in L1.

E. Zuazua (DeustoTech & UAM ) Population dynamics control UPR, December 2018 38 / 48



Positivity of controlled trajectories

Numerical experiments I
The constrained Dirichlet control problem
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Positivity of controlled trajectories

Numerical experiments II
The constrained Dirichlet control problem
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Positivity of controlled trajectories

The impact of the impulses on the controlled trajectories
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Conclusions

Conclusions

1 A number of basic ingredients have been understood/developed.

2 Similar results for boundary control in the x variable.

3 Similar results for abstract models: replace �� by A (possibly in time
greater than a1 + (a† � a2)).

4 Plenty of interesting open analytical problems (sparsity structure of
controls in minimal time).

5 Lots to be done to address more complex and complete models in
population dynamics:

Nonlinear di↵usion
Systems
Networks

6 Delivering results which might be quantitatively accurate and useful is
a true challenge.
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Conclusions

Constrained control for the heat equation in long time

We have shown that controllability with constraints can be achieved in
long time. In fact, it is impossible to do it in short time!

Theorem

Whatever the initial datum ⇢0 and the steady state target ⇢1 associated to
u1 � ⌫ is, the minimal control time under the positivity constraint is
positive:

Tmin > 0,

except in the trivial case where ⇢0 ⌘ ⇢1.
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Conclusions

Proof of the waiting time

To fix ideas and without loss of generality we assume that ⇢0 ⌘ 0.
The target ⇢1 > 0.
Assume that the control u � 0, and show that, then, T cannot be too
short.
By duality, if y(T ) = y1,

h⇢1,'T i+
Z

T

0

Z

@⌦
u
@'

@n
d�(x)dt = 0,

where 8
><

>:

'
t

+�' = 0 in (0,T )⇥ ⌦

' = 0 on (0,T )⇥ @⌦

'(T , x) = 'T (x). in ⌦
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Conclusions

Thus, to conclude, in view of the identity

h⇢1,'T i+
Z

T

0

Z

@⌦
u
@'

@n
d�(x)dt = 0,

it su�ces to find T0 > 0 and a final datum 'T 2 H1
0 (⌦) such that, for any

T 2 (0,T0), the solution of the adjoint system with final datum 'T

satisfies: 8
<

:

⇣
@'
@n

⌘

+
= 0 on (0,T0)⇥ @⌦

h⇢1,'T i < 0, 8T 2 [0,T0).

This is assured with an initial datum of the form
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Conclusions

Explicit estimates on the waiting time

The proof above not only yields the fact that Tmin > 0, but actually gives
lower bounds on this waiting time, by a careful analysis of the behaviour of
the adjoint solutions.
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Conclusions

Controllability in minimal time

Theorem

The system is controllable in minimal time Tmin with a non-negative
measure u as control

The proof is again a consequence of the identity:

h⇢1,'T i+
Z

T

0

Z

@⌦
u
@'

@n
d�(x)dt = 0,

now applied to the solution of the adjoint heat equation ' with �1, the
first eigenfunction of the Laplacian, as datum at time T :

' = exp(��1(T � t))�1(x).

This allows getting an L1 bound on the control and then get a limite
measure control as T ! Tmin.
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