Sensitivity Analysis, Uncertainty Quantification, and Control Design for Smart Material Systems

Ralph C. Smith
Department of Mathematics
North Carolina State University

Essentially, all models are wrong, but some are useful, George E.P. Box, Industrial Statistician.

Support: Air Force Office of Scientific Research (AFOSR)
National Science Foundation (NSF)
DOE Consortium for Advanced Simulation of LWR (CASL)
NNSA Consortium for Nonproliferation Enabling Capabilities (CNEC)
Sensitivity Analysis, Uncertainty Quantification, and Control Design for Smart Material Systems

Ralph C. Smith
Department of Mathematics
North Carolina State University

"We":

Nikolas Bravo, Nate Burch, John Crews, Jennifer Hannen, Zhengzheng Hu, Lider Leon, Jerry McMahan, Paul Miles, Graham Pash (NCSU)

Michael Hays, Billy Oates (Florida State University)

Alex Solomou (Texas A&M)

Max Morris (Iowa State University)
Example 1: Quantum-Informed Continuum Models

Objectives:

• Employ density function theory (DFT) to construct/calibrate continuum energy relations.

 – e.g., Landau energy

$$\psi(P) = \alpha_1 P^2 + \alpha_{11} P^4 + \alpha_{111} P^6$$

UQ and SA Issues:

• Is 6th order term required to accurately characterize material behavior?

• Note: Determines molecular structure
Quantum-Informed Continuum Models

Objectives:

- Employ density function theory (DFT) to construct/calibrate continuum energy relations.
 - e.g., Landau energy
 \[\psi(P) = \alpha_1 P^2 + \alpha_{11} P^4 + \alpha_{111} P^6 \]

UQ and SA Issues:

- Is 6th order term required to accurately characterize material behavior?
- Note: Determines molecular structure

Broad Objective:

- Use UQ/SA to help bridge scales from quantum to system

Collaborators: Billy Oates, Paul Miles, Lider Leon
Example 2: Viscoelastic Material Models

Application: Adaptive materials for legged robotics

Material Behavior: Significant rate dependence

Collaborators: Billy Oates, Paul Miles, Michael Hays
Example: Viscoelastic Material Models

Material Behavior: Significant rate dependence

Finite-Deformation Model: Nonlinear, non-affine

\[\psi(q) = \psi_\infty(G_e, G_c, \lambda_{\text{max}}) + \gamma(\eta, \beta, \gamma) \]

- Dissipative energy function \(\gamma \)
- Conserved hyperelastic energy function

\[\psi^N_\infty = \frac{1}{6} G_c I_1 - G_c \lambda_{\text{max}}^2 \ln(3 \lambda_{\text{max}}^2 - I_1) + G_e \sum_j \left(\lambda_j + \frac{1}{\lambda_j} \right) \]

Parameters:

\[q = [G_e, G_c, \lambda_{\text{max}}, \eta, \beta, \gamma] \]

- \(G_c \): Crosslink network modulus
- \(G_e \): Plateau modulus
- \(\lambda_{\text{max}} \): Max stretch effective affine tube
- \([\eta, \beta, \gamma] \): Viscoelastic parameters

Uncertainty Quantification Goals:

- Quantify measurement errors.
- Quantify uncertainty in parameters.
- Use statistics to quantify accuracy of considered models.
- Employ fractional-order models to quantify rate-dependent hysteresis.
Example: Viscoelastic Material Models

Viscoelastic Constitutive Law:

\[Q_{iK} = \eta D_t^\alpha F_{iK} \]

Fractional Derivative:

- Riemann-Liouville definition

\[D_t^\alpha[f(t)] = \frac{1}{\Gamma(n-\alpha)} \frac{d^n}{dt^n} \int_0^t \frac{f(s)}{(t-s)^{\alpha+1-n}} ds \]

where \(n = \lfloor \alpha \rfloor \). Consider \(\alpha \in [0, 1) \Rightarrow n = 1 \)

\[D_t^\alpha[f(t)] = \frac{1}{\Gamma(n-\alpha)} \frac{d}{dt} \int_0^t \frac{f(s)}{(t-s)^\alpha} ds \]

Issue: Singularity at upper integration limit requires delicate quadrature

- We employ hybrid Gaussian quadrature/analytic Riemann sum approximation

Collaborators: Graham Pash, Paul Miles
Shape Memory Alloy (SMA) Actuators and Sensors

Shape Memory Alloys:

- Catheters for Laser Ablation
- SMA Hinges for Solar Arrays
- Chevrons for Noise Reduction/Fuel efficiency

Properties and Challenges:
- High work densities
- Slow actuation rates (e.g., Hz)
- Hysteretic dynamics
Example 4: Multiscale Model Development

Example: PZT-Based Macro-Fiber Composites

\[
\rho \dddot{\mathbf{u}} = \nabla \cdot \mathbf{\sigma} + \mathbf{F}
\]

\[
\nabla \cdot \mathbf{D} = 0, \quad \mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}
\]

\[
\nabla \times \mathbf{E} = 0, \quad \mathbf{E} = -\nabla \varphi
\]

Continuum Energy Relations:

\[
P^\alpha = d_\alpha \mathbf{\sigma} + \chi^\alpha \mathbf{E} + P^\alpha_R
\]

\[
\varepsilon^\alpha = s^E \mathbf{\sigma} + d_\alpha \mathbf{E} + \varepsilon^\alpha_R
\]

Homogenized Energy Model (HEM):

\[
P = d(E, \mathbf{\sigma}) \mathbf{\sigma} + \chi^\mathbf{\sigma} \mathbf{E} + P_{\text{irr}}(E, \mathbf{\sigma})
\]

\[
\varepsilon = s^E \mathbf{\sigma} + d(E, \mathbf{\sigma}) \mathbf{E} + \varepsilon_{\text{irr}}(E, \mathbf{\sigma})
\]
Example: PZT-Based MFC and Robobee

Beam Model: 20 parameters

\[
\rho \frac{\partial^2 w}{\partial t^2} + \gamma \frac{\partial w}{\partial t} - \frac{\partial^2 M}{\partial x^2} = 0
\]

\[
M = -c^E I \frac{\partial^2 w}{\partial x^2} - c_D l \frac{\partial^3 w}{\partial x^2 \partial t} - [k_1 e(E, \sigma_0) E + k_2 \varepsilon_{irr}(E, \sigma_0)] \chi_{MFC}(x)
\]

Homogenized Energy Model (HEM)

2nd Example: Robobee Drive Mechanism
Multiscale Model Development: Macro-Fiber Composites

Strong Form:

\[
\rho(x) \frac{\partial^2 w(t, x)}{\partial t^2} - \gamma \frac{\partial w(t, x)}{\partial t} - \frac{\partial^2 M(t, x)}{\partial x^2} = 0
\]

\[
M(t, x) = -c E I(x) \frac{\partial^2 w(t, x)}{\partial x} - C_d I(x) \frac{\partial^3 w(t, x)}{\partial x^2 \partial t} + F(t, x, w)
\]

Notes:

- Nonlinear, hysteretic and rate-dependent behavior incorporated in \(F(t, x, w) \)
- Consider tip displacement \(w(t, \bar{x}, q) \) where \(q \in \mathbb{R}^{20} \) are model parameters; i.e., \(y(t, q) = w(t, \bar{x}, q) \).
- Employ Galerkin representation \(w^N(t, x) = \sum_{i=1}^{N} w_i^N(t) \phi_i(x) \) in weak formulation to obtain finite-dimensional semi-discrete system where \(z(t) = [w^N(t), \dot{w}^N(t)] \).

Control Formulation:

\[
\frac{dz}{dt} = f(t, z, u, q) + v_1(t)
\]

\[
y(t, q) = Cz(t, q) + v_2(t)
\]

Statistical Model:

\[
y_i = w^N(t_i, q) + \varepsilon_i, \quad i = 1, \ldots, n
\]

UQ Formulation:

\[
\frac{dz}{dt} = f(t, z, q) + v_1(t)
\]

\[
y(t) = \int_{\mathbb{R}^{20}} w^N(t, \bar{x}, q) \rho(q) \, dq
\]

E.g., Average tip displacement
Broad Control and UQ Objectives

Control Formulation:
\[
\frac{dz}{dt} = f(t, z, u, q) + v_1(t)
\]
\[
y(t, q) = Cz(t, q) + v_2(t)
\]

UQ Formulation: e.g., average tip displacement
\[
\frac{dz}{dt} = f(t, z, q) + v_1(t)
\]
\[
y(t) = \int_{\mathbb{R}^{20}} w^N(t, \bar{x}, q) \rho(q) dq
\]

Control Objectives:

• Determine optimal q; requires identifiability analysis.

• Construct reduced-order model for state z; e.g., POD, DMD.

• Determine plant error \(\Delta \) for robust control design.

• Construct state estimator \(Z_c(t) \).

• Compute feedforward or feedback controls; e.g., \(u(t) = -kz_c(t) \).

• Note: Feedback not necessary if no uncertainties!

UQ Objectives:

• Determine identifiable parameter subsets or subspace; SA or active subspace techniques.

• Construct surrogate model; e.g., GP, regression, collocation, POD.

• Infer distributions (Bayesian) or estimators (frequentist) for q or q(x).

• Compute distributions or statistics for QoI. Analytic relations for stochastic Galerkin or collocation for certain distributions; e.g., Gaussian or uniform.
Steps in Uncertainty Quantification

Note: Uncertainty quantification requires synergy between engineering, statistics, and mathematics.
Deterministic Model Calibration

Example: MFC

\[\rho \frac{\partial^2 w}{\partial t^2} + \gamma \frac{\partial w}{\partial t} - \frac{\partial^2 M}{\partial x^2} = 0 \]

\[M = -c_E I \frac{\partial^2 w}{\partial x^2} - c_D I \frac{\partial^3 w}{\partial x^2 \partial t} \]

\[- [k_1 e(E, \sigma_0) E + k_2 \varepsilon_{irr}(E, \sigma_0)] \chi_{MFC}(x) \]

Homogenized Energy Model (HEM)

Parameters: \(q = [q_{\text{beam}}, q_{\text{hys}}] \)

- HEM \(q_{\text{hys}} = [P_R^+, \varepsilon_R^+, \varepsilon_R^{90}, \chi^\sigma, d_+, \tilde{\gamma}, \tau_{90}, \tau_{180}, \mu_c, \sigma_c^2, \sigma_l^2] \)

- Beam: \(q_{\text{beam}} = [\bar{\rho}, \bar{\rho}, \bar{c}E I, \bar{c}E I, \bar{c}_D I, \bar{c}_D I, \gamma, k_1, k_2,] \)

Point Estimates: Ordinary least squares

\[q^0 = \arg \min_q \frac{1}{2} \sum_{j=1}^N [w_j - w^N(t_j, \bar{x}, q)]^2 \]
Deterministic Model Calibration

Representative Parameter Values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_+ (m/V)</td>
<td>478.10×10^{-12}</td>
</tr>
<tr>
<td>σ_l (V/m)</td>
<td>6.47×10^6</td>
</tr>
<tr>
<td>τ_{180} (s)</td>
<td>2.80×10^{-3}</td>
</tr>
</tbody>
</table>

1 Hz Input (400, 800 VDC)

30 Hz Input

146 Hz Input

Phase Space

Frequency Sweep

Note: Point estimates but no quantification of uncertainty in:
- Model
- Parameters
- Data

Collaborators: Zhengzheng Hu, Michael Hays, Nate Burch, Billy Oates
Objective for Uncertainty Quantification

Goal: Replace point estimates with distributions or credible intervals

E.g., Parameter Densities

E.g., Response Intervals
Bayesian Inference: Motivation

Example: Displacement-force relation (Hooke’s Law)

\[s_i = E e_i + \varepsilon_i, \quad i = 1, \ldots, N \]
\[\varepsilon_i \sim \mathcal{N}(0, \sigma^2) \]

Parameter: Stiffness \(E \)

Strategy: Use model fit to data to update prior information

\[
\begin{align*}
\pi_0(E) & \quad \text{Prior Information} \\
\pi(E|s) = e^{-\sum_{i=1}^{N} [s_i - E e_i]^2 / 2\sigma^2} & \quad \text{Updated Information} \\
\end{align*}
\]

Non-normalized Bayes’ Relation:

\[
\pi(E|s) = e^{-\sum_{i=1}^{N} [s_i - E e_i]^2 / 2\sigma^2} \pi_0(E)
\]
Bayesian Inference: Motivation

Bayes’ Relation: Specifies posterior in terms of likelihood and prior

\[\pi(q|\nu) = \frac{\pi(\nu|q)\pi_0(q)}{\int_{\mathbb{R}^p} \pi(\nu|q)\pi_0(q) dq} \]

- **Prior Distribution:** Quantifies prior knowledge of parameter values
- **Likelihood:** Probability of observing a data given set of parameter values.
- **Posterior Distribution:** Conditional distribution of parameters given observed data.

Problem: Can require high-dimensional integration

- e.g., MFC Model: \(p = 20! \)

Solution: Sampling-based Markov Chain Monte Carlo (MCMC) algorithms.

- Metropolis algorithms first used by nuclear physicists during Manhattan Project in 1940’s to understand particle movement underlying first atomic bomb.

\[e^{-\sum_{i=1}^{N} [s_i - Ee_i]^2 / 2\sigma^2}, \quad q = E \nu = [s_1, \ldots, s_N] \]
Delayed Rejection Adaptive Metropolis (DRAM)

Algorithm: [Haario et al., 2006] – MATLAB, Python

1. Determine $q^0 = \arg \min_q \sum_{i=1}^{N} [u_i - f(t_i, q)]^2$

2. For $k = 1, \cdots, M$
 (a) Construct candidate $q^* \sim N(q^{k-1}, V)$
 (b) Compute likelihood
 \[SS_{q^*} = \sum_{i=1}^{N} [u_i - f(t_i, q^*)]^2 \]
 \[\pi(u|q) = \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-SS_q/2\sigma^2} \]
 (c) Accept q^* with probability dictated by likelihood
Delayed Rejection Adaptive Metropolis (DRAM)

Algorithm: [Haario et al., 2006] – MATLAB, Python

1. Determine $q^0 = \arg \min_q \sum_{i=1}^{N} [v_i - f(t_i, q)]^2$

2. For $k = 1, \cdots, M$
 (a) Construct candidate $q^* \sim N(q^{k-1}, V)$
 (b) Compute likelihood
 $$SS_{q^*} = \sum_{i=1}^{N} [v_i - f(t_i, q^*)]^2$$
 $$\pi(v|q) = \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-SS_q/2\sigma^2}$$
 (c) Accept q^* with probability dictated by likelihood
Delayed Rejection Adaptive Metropolis (DRAM)

Algorithm: [Haario et al., 2006] – MATLAB, Python

1. Determine \(q^0 = \arg \min_q \sum_{i=1}^{N} [u_i - f(t_i, q)]^2 \)

2. For \(k = 1, \cdots, M \)
 (a) Construct candidate \(q^* \sim N(q^{k-1}, V) \)
 (b) Compute likelihood
 \[
 SS_{q^*} = \sum_{i=1}^{N} [u_i - f(t_i, q^*)]^2 \\
 \pi(u|q) = \frac{1}{(2\pi \sigma^2)^n/2} e^{-SS_q/2\sigma^2}
 \]
 (c) Accept \(q^* \) with probability dictated by likelihood
Delayed Rejection Adaptive Metropolis (DRAM)

Algorithm: [Haario et al., 2006] – MATLAB, Python

1. Determine $q^0 = \arg \min_q \sum_{i=1}^N [v_i - f(t_i, q)]^2$

2. For $k = 1, \cdots, M$
 (a) Construct candidate $q^* \sim N(q^{k-1}, V)$
 (b) Compute likelihood
 \[
 SS_{q^*} = \sum_{i=1}^N [v_i - f(t_i, q^*)]^2
 \]
 \[
 \pi(v|q) = \frac{1}{(2\pi\sigma^2)^n} e^{-SS_q/2\sigma^2}
 \]
 (c) Accept q^* with probability dictated by likelihood.
Delayed Rejection Adaptive Metropolis (DRAM)

Algorithm: [Haario et al., 2006] – MATLAB, Python

1. Determine $q^0 = \arg \min_q \sum_{i=1}^{N} [v_i - f(t_i, q)]^2$

2. For $k = 1, \cdots, M$

 (a) Construct candidate $q^* \sim N(q^{k-1}, V)$

 (b) Compute likelihood

 $$SS_{q^*} = \sum_{i=1}^{N} [v_i - f(t_i, q^*)]^2$$

 $$\pi(v|q) = \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-SS_q/2\sigma^2}$$

 (c) Accept q^* with probability dictated by likelihood
Delayed Rejection Adaptive Metropolis (DRAM)

Algorithm: [Haario et al., 2006] – MATLAB, Python

1. Determine \(q^0 = \arg \min_q \sum_{i=1}^{N} [y_i - f(t_i, q)]^2 \)

2. For \(k = 1, \cdots, M \)
 (a) Construct candidate \(q^* \sim N(q^{k-1}, V) \)
 (b) Compute likelihood

\[
SS_{q^*} = \sum_{i=1}^{N} [y_i - f(t_i, q^*)]^2
\]

\[
\pi(u|q) = \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-SS_q/2\sigma^2}
\]

(c) Accept \(q^* \) with probability dictated by likelihood
Example: Viscoelastic Material Models

Material Behavior: Significant rate dependence

Finite-Deformation Model: Nonlinear, non-affine

\[
\psi(q) = \psi_{\infty}(G_e, G_c, \lambda_{\text{max}}) + \gamma(\eta, \beta, \gamma)
\]

- Dissipative energy function \(\gamma\)
- Conserved hyperelastic energy function

\[
\psi_{\infty}^{N} = \frac{1}{6} G_c I_1 - G_c \lambda_{\text{max}}^2 \ln(3 \lambda_{\text{max}}^2 - I_1) + G_e \sum_j \left(\lambda_j + \frac{1}{\lambda_j} \right)
\]

Parameters:

\[q = [G_e, G_c, \lambda_{\text{max}}, \eta, \beta, \gamma]\]

- \(G_c\): Crosslink network modulus
- \(G_e\): Plateau modulus
- \(\lambda_{\text{max}}\): Max stretch effective affine tube

[\(\eta, \beta, \gamma]\): Viscoelastic parameters

UQ Goals:

- Quantify uncertainty in parameters.
- Use UQ for model selection
 - E.g., linear versus nonlinear.
- Quantify models’ predictive capabilities for range of stretch rates.

Initial Focus
Viscoelastic Model

Reduced Parameter Set:

\[q = [\eta, \beta, \gamma] \ , \text{ Fixed hyperelastic parameters} \]

Note: Fastest stretch rate (0.67 Hz)

Question: How do we quantify uncertainty in response (stress)?

Solution: Propagate parameter and measurement uncertainties through model.
Prediction Intervals for the Viscoelastic Model

Linear Non-Affine Model: Not accurate for predicting higher stretch rates

\[
\frac{d\lambda}{dt} = 6.7 \times 10^{-5} \text{ Hz}
\]

\[
\frac{d\lambda}{dt} = 0.335 \text{ Hz}
\]

\[
\frac{d\lambda}{dt} = 0.67 \text{ Hz}
\]
Prediction Intervals for the Viscoelastic Model

Linear Non-Affine Model:

- \(\frac{d\lambda}{dt} = 0.335 \text{ Hz} \)
- \(\frac{d\lambda}{dt} = 6.7 \times 10^{-5} \text{ Hz} \)
- \(\frac{d\lambda}{dt} = 0.67 \text{ Hz} \)

Nonlinear Non-Affine Model: Significantly more accurate over range of stretch rates!

- \(\frac{d\lambda}{dt} = 0.335 \text{ Hz} \)
- \(\frac{d\lambda}{dt} = 6.7 \times 10^{-5} \text{ Hz} \)
- \(\frac{d\lambda}{dt} = 0.67 \text{ Hz} \)
Prediction Intervals for the Viscoelastic Model

Linear Viscoelasticity:

- Fractional-order relation
 \[Q_{ik} = \eta D_t^\alpha F_{ik} \]
- C – Calibrated
- P - Predicted

Note:

\[\bar{\eta} = 35.3 \]
\[\bar{\alpha} = 0.12 \]

Calibrated Rate (1/s): \(6.7 \times 10^{-5} \)

Predicted Rates:

\[\frac{d\lambda}{dt} = 6.5 \times 10^{-5} \text{ Hz} \]
\[\frac{d\lambda}{dt} = 0.0472 \text{ Hz} \]
\[\frac{d\lambda}{dt} = 0.335 \text{ Hz} \]
\[\frac{d\lambda}{dt} = 0.67 \text{ Hz} \]

Collaborators: Billy Oates, Paul Miles
Use of Prediction Intervals: Nuclear Power Plant Design

Subchannel Code (COBRA-TF): numerous closure relations, ~70 parameters

e.g., Dittus—Boelter Relation

\[Nu = 0.023 Re^{0.8} Pr^{0.4} \]

Nu: Nusselt number

Re: Reynolds number

Pr: Prandtl number

Industry Standard: Employ conservative, uniform, bounds

i.e., [0, 0.046], [0, 1.6], [0, 0.8]

Bayesian Analysis: Employ conservative bounds as priors

Note: Substantial reduction in parameter uncertainty
Use of Prediction Intervals: Nuclear Power Plant Design

Strategy: Propagate parameter uncertainties through COBRA-TF surrogate to determine uncertainty in maximum fuel temperature

Notes:
- Temperature uncertainty reduced from 40 degrees to 5 degrees
- Can run plant 20 degrees hotter, which significantly improves efficiency
Use of Prediction Intervals: Nuclear Power Plant Design

Strategy: Propagate parameter uncertainties through COBRA-TF surrogate to determine uncertainty in maximum fuel temperature

Notes:
- Temperature uncertainty reduced from 40 degrees to 5 degrees
- Can run plant 20 degrees hotter, which significantly improves efficiency

Ramification: Savings of 10 billion dollars per year for US power plants
Use of Prediction Intervals: Nuclear Power Plant Design

Strategy: Propagate parameter uncertainties through COBRA-TF surrogate to determine uncertainty in maximum fuel temperature

Notes:
- Temperature uncertainty reduced from 40 degrees to 5 degrees
- Can run plant 20 degrees hotter, which significantly improves efficiency

Ramification: Savings of **10 billion dollars per year** for US power plants

Issues:
- We considered only one of many closure relations
- Nuclear regulatory commission takes years to change requirements and codes

Good News: We are now working with Westinghouse to reduce uncertainties.

Note: Requires construction and verification of surrogate models.
Uncertainty Quantification Challenges

Viscoelastic Material Model: Full Parameter Set

\[q = [G_e, G_c, \lambda_{\text{max}}, \eta, \beta, \gamma] \]

Problem: Several parameter pairs appear non-identifiable in the sense they are not uniquely determined by the response!
Broad Control and UQ Objectives

Control Formulation:
\[
\frac{dz}{dt} = f(t, z, u, q) + v_1(t)
\]
\[
y(t, q) = Cz(t, q) + v_2(t)
\]

Control Objectives:
- Determine optimal \(q\); requires identifiability analysis.
- Construct reduced-order model for state \(z\); e.g., POD, DMD.
- Determine plant error \(\Delta\) for robust control design.
- Construct state estimator \(Z_c(t)\).
- Compute feedforward or feedback controls; e.g., \(u(t) = -kz_c(t)\).
- Note: Feedback not necessary if no uncertainties!

UQ Formulation: e.g., average tip displacement
\[
\frac{dz}{dt} = f(t, z, q) + v_1(t)
\]
\[
y(t) = \int_{\mathbb{R}^n} w^N(t, \bar{x}, q) \rho(q) dq
\]

UQ Objectives:
- Determine identifiable parameter subsets or subspace; GSA or active subspace techniques.
- Construct surrogate model; e.g., GP, regression, collocation, POD.
- Infer distributions (Bayesian) or estimators (frequentist) for \(q\) or \(q(x)\).
- Compute distributions or statistics for QoI. Analytic relations for stochastic Galerkin or collocation for certain distributions; e.g., Gaussian or uniform.
Parameter Selection Techniques

First Issue: Parameters often *not identifiable* in the sense that they are uniquely determined by the data.

Example: Spring model

\[
m \frac{d^2 z}{dt^2} + c \frac{dz}{dt} + k z = f_0 \cos(\omega_F t)
\]

\[z(0) = z_0, \quad \frac{dz}{dt}(0) = z_1\]

Problem: Parameters \(q = [m, c, k, f_0] \) and \(q = [1, \frac{c}{m}, \frac{k}{m}, \frac{f_0}{m}] \) yield same displacements.
Parameter Selection Techniques

First Issue: Parameters often not identifiable in the sense that they are uniquely determined by the data.

Example: Spring model

\[m \ddot{z} + c \dot{z} + kz = f_0 \cos(\omega_F t) \]

\[z(0) = z_0, \quad \frac{dz}{dt}(0) = z_1 \]

Problem: Parameters \(q = [m, c, k, f_0] \) and \(q = [1, \frac{c}{m}, \frac{k}{m}, \frac{f_0}{m}] \) yield same displacements

Solution: Reformulate problem as

\[\ddot{z} + C \dot{z} + Kz = F_0 \cos(\omega_F t) \]

\[z(0) = z_0, \quad \frac{dz}{dt}(0) = z_1 \]

where \(C = \frac{c}{m}, K = \frac{k}{m} \) and \(F_0 = \frac{f_0}{m} \)

Techniques for General Models:

- Linear algebra analysis;
 - e.g., SVD or QR algorithms
- Global Sensitivity analysis
- Parameter subset selection
- Active subspaces: Identifiable subspaces from control
Sensitivity Analysis: Motivation

Example: Linear elastic constitute relation

\[
\sigma = E e + c \frac{de}{dt}
\]

Nominal Values: \(E = 100, \ c = 0.1, \ e = 0.001, \ \frac{de}{dt} = 0.1 \)

Question: To which parameter \(E \) or \(c \) is stress most sensitive?

Local Sensitivity Analysis:

\[
\frac{\partial \sigma}{\partial E} = e = 0.001
\]

\[
\frac{\partial \sigma}{\partial c} = \frac{de}{dt} = 0.1
\]

Conclusion: Model most sensitive to damping parameter \(c \)
Sensitivity Analysis: Motivation

Example: Linear elastic constitute relation

\[\sigma = Ee + c \frac{de}{dt} \]

Nominal Values: \(E = 100, \ c = 0.1, \ e = 0.001, \ \frac{de}{dt} = 0.1 \)

Question: To which parameter \(E \) or \(c \) is stress most sensitive?

Local Sensitivity Analysis:

\[\frac{\partial \sigma}{\partial E} = e = 0.001 \]

\[\frac{\partial \sigma}{\partial c} = \frac{de}{dt} = 0.1 \]

Conclusion: Model most sensitive to damping parameter \(c \)

Limitations:

- Does not accommodate potential uncertainty in parameters.
- Does not accommodate potential correlation between parameters.
- Sensitive to units and magnitudes of parameters.
Global Sensitivity Analysis

Example: Linear elastic constitutive relation

\[\sigma = E e + c \frac{de}{dt} \]

Nominal Values: \(E = 100, \ c = 0.1 \)

Uncertainty: 10% of nominal values

\[E \sim \mathcal{U}(90, 110), \ c \sim \mathcal{U}(0.09, 0.11) \]

Local Sensitivities:

\[\frac{\partial \sigma}{\partial E} = e = 0.001 \]
\[\frac{\partial \sigma}{\partial c} = \frac{de}{dt} = 0.1 \]

Global Sensitivity: \(E \) is more influential
Global Sensitivity Analysis: Analysis of Variance (ANOVA)

Sobol’ Representation: \(Y = f(q) \)

\[
f(q) = f_0 + \sum_{i=1}^{p} f_i(q_i) + \sum_{i \leq i < j \leq p} f_{ij}(q_i, q_j) + \cdots + f_{12\ldots p}(q_1, \ldots, q_p)
\]

\[
= f_0 + \sum_{i=1}^{p} \sum_{|u|=i} f_u(q_u)
\]

where

\[
f_0 = \int_{\Gamma} f(q) \rho(q) dq = \mathbb{E}[f(q)]
\]

\[
f_i(q_i) = \mathbb{E}[f(q)|q_i] - f_0
\]

\[
f_{ij}(q_i, q_j) = \mathbb{E}[f(q)|q_i, q_j] - f_i(q_i) - f_j(q_j) - f_0
\]

Typical Assumption: \(q_1, q_2, \ldots, q_p \) independent. Then

\[
\int_{\Gamma} f_u(q_u) f_v(q_v) \rho(q) dq = 0 \quad \text{for} \quad u \neq v
\]

\[
\Rightarrow \text{var}[f(q)] = \sum_{i=1}^{p} \sum_{|u|=i} \text{var}[f_u(q_u)]
\]

Sobol’ Indices:

\[
S_u = \frac{\text{var}[f_u(q_u)]}{\text{var}[f(q)]}, \quad T_u = \sum_{v \subseteq u} S_v
\]

Note: Magnitude of \(S_i, T_i \) quantify contributions of \(q_i \) to \(\text{var}[f(q)] \)
Global Sensitivity Analysis

Example: Quantum-informed continuum model

Question: Do we use 4\(^{th}\) or 6\(^{th}\)-order Landau energy?

\[
\psi(P, q) = \alpha_1 P^2 + \alpha_{11} P^4 + \alpha_{111} P^6
\]

Parameters:

\[
q = [\alpha_1, \alpha_{11}, \alpha_{111}]
\]

Global Sensitivity Analysis:

<table>
<thead>
<tr>
<th></th>
<th>(\alpha_1)</th>
<th>(\alpha_{11})</th>
<th>(\alpha_{111})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_j)</td>
<td>0.62</td>
<td>0.39</td>
<td>0.01</td>
</tr>
<tr>
<td>(S_{Tj})</td>
<td>0.66</td>
<td>0.38</td>
<td>0.06</td>
</tr>
<tr>
<td>(\mu^*_j)</td>
<td>0.17</td>
<td>0.07</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Conclusion: \(\alpha_{111}\) insignificant and can be fixed
Global Sensitivity Analysis

Example: Quantum-informed continuum model

Question: Do we use 4th or 6th-order Landau energy?

\[\psi(P, q) = \alpha_1 P^2 + \alpha_{11} P^4 + \alpha_{111} P^6 \]

Parameters:

\[q = [\alpha_1, \alpha_{11}, \alpha_{111}] \]

Global Sensitivity Analysis:

<table>
<thead>
<tr>
<th></th>
<th>(\alpha_1)</th>
<th>(\alpha_{11})</th>
<th>(\alpha_{111})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_i)</td>
<td>0.62</td>
<td>0.39</td>
<td>0.01</td>
</tr>
<tr>
<td>(S_{Ti})</td>
<td>0.66</td>
<td>0.38</td>
<td>0.06</td>
</tr>
<tr>
<td>(\mu_i^*)</td>
<td>0.17</td>
<td>0.07</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Conclusion:

\(\alpha_{111} \) insignificant and can be fixed

Problem: We obtain different distributions when we perform Bayesian inference with fixed non-influential parameters.

![Graphs showing distributions of different parameters](image-url)
Global Sensitivity Analysis

Example: Quantum-informed continuum model

Question: Do we use 4^{th} or 6^{th}-order Landau energy?

$$\psi(P, q) = \alpha_1 P^2 + \alpha_{11} P^4 + \alpha_{111} P^6$$

Parameters:

$$q = [\alpha_1, \alpha_{11}, \alpha_{111}]$$

Global Sensitivity Analysis:

<table>
<thead>
<tr>
<th></th>
<th>α_1</th>
<th>α_{11}</th>
<th>α_{111}</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_j</td>
<td>0.62</td>
<td>0.39</td>
<td>0.01</td>
</tr>
<tr>
<td>S_{T_i}</td>
<td>0.66</td>
<td>0.38</td>
<td>0.06</td>
</tr>
<tr>
<td>μ^{*}_i</td>
<td>0.17</td>
<td>0.07</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Problem:

- Parameters correlated
- Cannot fix α_{111}

Solution: Must accommodate correlation
Global Sensitivity Analysis: Analysis of Variance (ANOVA)

Sobol’ Representation:

\[f(q) = f_0 + \sum_{i=1}^{p} \sum_{|u|=i} f_u(q_u) \]

One Solution: Take variance to obtain

\[\text{var}[f(q)] = \sum_{i=1}^{p} \sum_{|u|=i} \text{cov}[f_u(q_u), f(q)] \]

Sobol’ Indices:

\[S_u = \frac{\text{cov}[f_u(q_u), f(q)]}{\text{var}[f(q)]} \]

Pros:

- Provides variance decomposition that is analogous to independent case

Cons:

- Indices can be negative and difficult to interpret
- Often difficult to determine underlying distribution
- Monte Carlo approximation often prohibitively expensive.
Global Sensitivity Analysis: Analysis of Variance (ANOVA)

Sobol’ Representation:

\[
f(q) = f_0 + \sum_{i=1}^{p} \sum_{|u|=i} f_u(q_u)
\]

One Solution: Take variance to obtain

\[
\text{var}[f(q)] = \sum_{i=1}^{p} \sum_{|u|=i} \text{cov}[f_u(q_u), f(q)]
\]

Sobol’ Indices:

\[
S_u = \frac{\text{cov}[f_u(q_u), f(q)]}{\text{var}[f(q)]}
\]

Pros:

- Provides variance decomposition that is analogous to independent case

Cons:

- Indices can be negative and difficult to interpret
- Often difficult to determine underlying distribution
- Monte Carlo approximation often prohibitively expensive.

Alternatives:

- Parameter subset selection
- Construct active subspaces
 - Often effective in high-dimensional spaces; e.g., \(p = 7700 \) reduced to 5-D active subspace for neutronics example
One Solution: Parameter Subset Selection

Consider

$$
\psi(P_i, q) \approx \psi(P_i, q^*) + \nabla_q \psi(P_i, q^*) \Delta q
$$

where

$$
\nabla_q \psi(P_i, q^*) = \left[\frac{\partial \psi}{\partial \alpha_1}(P_i, q^*), \frac{\partial \psi}{\partial \alpha_{11}}(P_i, q^*) \right]
$$

Functional: Since $$\nu_i \approx \psi(P_i, q^*)$$

$$
J(q) = \frac{1}{n} \sum_{i=1}^{n} \left[\nu_i - \psi(P_i, q) \right]^2
$$

$$
\approx \frac{1}{n} \sum_{i=1}^{n} \left[\nabla_q \psi(P_i, q^*) \cdot \Delta q \right]^2
$$

$$
= \frac{1}{n} (\chi \Delta q)^T (\chi \Delta q)
$$

Note:

$$
J(q^* + \Delta q) \approx \frac{1}{n} \Delta q^T \chi^T \chi \Delta q
$$

Sensitivity Matrix:

$$
\chi(q^*) = \begin{bmatrix}
\frac{\partial \psi}{\partial \alpha_1}(P_1, q^*) & \frac{\partial \psi}{\partial \alpha_{11}}(P_1, q^*) \\
\vdots & \vdots & \vdots \\
\frac{\partial \psi}{\partial \alpha_1}(P_n, q^*) & \frac{\partial \psi}{\partial \alpha_{11}}(P_n, q^*)
\end{bmatrix}
$$
One Solution: Parameter Subset Selection

Note:
\[J(q^* + \Delta q) \approx \frac{1}{n} \Delta q^T \chi^T \chi \Delta q \]

Strategy: Take \(\Delta q \) to be eigenvector of \(\chi^T \chi \) Fisher Information
\[\Rightarrow \chi^T \chi \Delta q = \lambda \Delta q \]
\[\Rightarrow J(q^* + \Delta q) \approx \frac{\lambda}{n} \| \Delta q \|_2^2 \]

Note: \(\lambda \approx 0 \Rightarrow \) Perturbations \(J(q^* + \Delta q) \approx 0 \)
\[\Rightarrow \) Nonidentifiable

Note: Estimator for covariance matrix
\[V = s^2 [\chi^T \chi]^{-1} = \begin{bmatrix}
\text{var}(q_1) & \text{cov}(q_1, q_2) & \cdots & \text{cov}(q_1, q_n) \\
\text{cov}(q_2, q_1) & \text{var}(q_2) & \text{cov}(q_2, q_3) \\
\vdots & & \ddots & \vdots \\
\text{cov}(q_n, q_1) & \cdots & \cdots & \text{var}(q_n)
\end{bmatrix} \]

Ramification: Incorporates underlying distribution
One Solution: Parameter Subset Selection

Note:

\[J(q^* + \Delta q) \approx \frac{1}{n} \Delta q^T \chi^T \chi \Delta q \]

Strategy: Take \(\Delta q \) to be eigenvector of \(\chi^T \chi \) Fisher Information

\[\Rightarrow \chi^T \chi \Delta q = \lambda \Delta q \]
\[\Rightarrow J(q^* + \Delta q) \approx \frac{\lambda}{n} \| \Delta q \|_2^2 \]

\(\lambda \approx 0 \Rightarrow \) Perturbations \(J(q^* + \Delta q) \approx 0 \)
\[\Rightarrow \text{Nonidentifiable} \]

Example:

\[\psi(P, q) = \alpha_1 P^2 + \alpha_{11} P^4 + \alpha_{111} P^6 \]

Parameters:

\[q = [\alpha_1, \alpha_{11}, \alpha_{111}] \]

Result: \(\text{rank}(\chi^T \chi) = 3 \) so all parameters identifiable
Parameter Selection for SMA Model

Constitutive Model:

\[f(\sigma, T, q) = \varepsilon \]

Independent Variables:

- Stress: \(\sigma \)
- Temperature: \(T \)

14 Parameters:

\[q = [E_a, E_m, A_s, A_f, M_s, M_f, C_a, C_m, H_{max}, k_t, n_1, n_2, n_3, n_4] \]

Output: Strain \(\varepsilon \)

Note:

- Parameter subset selection yields 8 identifiable parameters

\[q^{id} = [A_s, A_f, M_s, M_f, C_a, C_m, H_{max}, k_t] \]
Bayesian Inference for SMA Model

Notes:

• Perform Bayesian inference for the 8 identifiable parameters
• Experimental data at four prestress levels

Collaborators: Paul Miles, Alex Solomou
Bayesian Inference for SMA Model

Chains and Marginal Distributions:
Bayesian Inference for SMA Model

Pairwise Distributions:

- Delayed Rejection Adaptive Metropolis (DRAM) correctly infers correlation structure
Uncertainty Propagation for SMA Model

Uncertainty Propagation: 95% credible and prediction intervals

\[\sigma = 100 \text{ MPa} \]

\[\sigma = 200 \text{ MPa} \]

\[\sigma = 300 \text{ MPa} \]

\[\sigma = 400 \text{ MPa} \]
Broad Control and UQ Objectives

Control Formulation:

\[
\frac{dz}{dt} = f(t, z, u, q) + v_1(t)
\]

\[
y(t, q) = Cz(t, q) + v_2(t)
\]

Control Objectives:

- Determine optimal q; requires identifiability analysis.
- Construct reduced-order model for state z; e.g., POD, DMD.
- Determine plant error \(\Delta \) for robust control design.
- Construct state estimator \(z_c(t) \).
- Compute feedforward or feedback controls; e.g., \(u(t) = -kz_c(t) \).
- Note: Feedback not necessary if no uncertainties!

UQ Formulation: e.g., average tip displacement

\[
\frac{dz}{dt} = f(t, z, q) + v_1(t)
\]

\[
y(t) = \int_{\mathbb{R}^{20}} w^N(t, \bar{x}, q)\rho(q)\,dq
\]

UQ Objectives:

- Determine identifiable parameter subsets or subspace; GSA or active subspace techniques.
- Construct surrogate model; e.g., GP, regression, collocation, POD.
- Infer distributions (Bayesian) or estimators (frequentist) for q or q(x).
- Compute distributions or statistics for QoI. Analytic relations for stochastic Galerkin or collocation for certain distributions; e.g., Gaussian or uniform.
Role of Uncertainty Quantification for Control Design

Strategy:

• Robust control provides control authority in presence of parameter uncertainty and plant disturbances.
• Use Bayesian inference and UQ to quantify uncertainties.

Example: Robotic SMA catheter actuated by Joule heating

• Bending angle: $\theta(t) = \frac{A_c L}{a} [\varepsilon_p - \varepsilon(t)]$
• Strain quantified by Homogenized Energy Model (HEM)
 \[\varepsilon(t) = \int_0^\infty \int_{-\infty}^\infty \bar{\varepsilon} [\sigma(t) + \sigma_l, T(t); \sigma_R] \nu_R(\sigma_R) \nu_I(\sigma_I) d\sigma_I d\sigma_R\]
• Heat transfer model
 \[\frac{dT}{dt}(t) = -h [T(t) - T_\infty] + \gamma u(t) + H \left\{ \frac{dx_{M+}}{dt}(t) + \frac{dx_{M-}}{dt}(t) \right\}\]
• Control input: Power $u(t)$
Sliding Mode Control Design

Approach:

- Inverse HEM converts reference bending angle to reference temperature
- Sliding mode controller (SMC) regulates temperature to reference temperature
- Temperature estimated using observer:
 \[
 \frac{dT_0}{dt}(t) = -h[T_0(t) - T_\infty] + \gamma u(t) + \cdots
 \]
 \[h = \bar{h} + \Delta h, \quad \gamma = \bar{\gamma} + \Delta \gamma\]
- Control augmented with Proportional-Integral (PI)
Experimental Control Results

0.1 Hz Sine Wave

0.2 Hz Sine Wave

Collaborators: John Crews, Jerry McMahan, Jennifer Hannen
Notes:

- UQ requires a synergy between domain science, applied mathematics, and statistics.

- Model calibration, model selection, uncertainty propagation and experimental design natural in a Bayesian framework.

- Goal: Predict model responses with quantified and reduced uncertainties.

- Parameter selection critical to isolate identifiable and influential parameters.

- Surrogate models critical for computationally intensive simulation codes; e.g., essentially all PDE.

- Significant synergies between control theory and Uncertainty Quantification.

- Codes and packages: MATLAB, Python, R, nanoHUB, Sandia Dakota.

- Prediction is very difficult, especially if it’s about the future. Niels Bohr.