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Generator

Given a Markov process (X ,Px , x ∈ E) on E , its transition
semigroup {Pt ; t ≥ 0} is given by

Ptφ(x) = Ex [φ(Xt )].

The infinitesimal generator L of X is

Lφ(x) = lim
t→0

Ptφ(x)− φ(x)

t
.

Hence u(t , x) = Ptφ(x) solves ∂u
∂t = Lu with u(0, x) = φ(x).

•When X is Brownian motion on Rd , L = 1
2∆.

•When X is an absorbing (or reflecting) Brownian motion in
D ⊂ Rd , L is the Dirichlet (or Neumann Laplacian in D.

•When X is a rotationally symmetric α-stable procese,
L = −(−∆)α/2.
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Dirichlet boundary value problem

Note that Ptφ(x)− φ(x) =
∫ t

0 LPsφ(x)dt . If φ ∈ Dom(L), then

Ptφ(x)− φ(x) =

∫ t

0
PsLφ(x)dt .

In other words, ExMt = 0 for t ≥ 0 and x ∈ E , where

Mt = φ(Xt )− φ(X0)−
∫ t

0
Lφ(Xs)ds.

This implies that Mt is a martingale.

Define τD = inf{t ≥ 0 : Xt /∈ D}. Then (under suitable condition)
ExMτD = 0. So if Lφ = 0 in D with φ(x) = g(x) on Dc , then

φ(x) = Ex [g(XτD )] , x ∈ D.

S. Kakutani (1944): used Brownian motion to solve classical
Dirichlet boundary value problem.
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Poisson equation

Under suitable conditions, the solution to
∂u
∂t

= Lu + f (t , x) with u(0, x) = φ(x)

is given by

u(t , x) = Ptφ(x) +

∫ t

0
Pt−sf (s, ·)(x)ds

= Exφ(Xt ) + Ex

∫ t

0
f (t − s,Xs)ds.

Why? Formally,

∂u
∂t

=
∂

∂t
Ptφ(x) + P0f (t , ·)(x) +

∫ t

0

∂

∂t
Pt−sf (s, ·)(x)ds

= LPtφ(x) + f (t , x) +

∫ t

0
LPt−sf (s, ·)(x)ds

= Lu(t , ·)(x) + f (t , x).
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Time fractional Poisson equation

The goal of this talk is to study

∂w
t v = Lv + f (t , x),

where

∂w
t g(t) :=

d
dt

∫ t

0
w(t − s)(g(s)− g(0))ds.

Here w ≥ 0 is a decreasing function with w(0) =∞ and∫∞
0 (t ∧ 1)(−dw(t)) <∞.

When w(r) = 1
Γ(1−β) r−β with 0 < β < 1, ∂w

t g(t) is the classical

Caputo fractional derivative ∂βt of order β.
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Why do we care

• Non-local spatial operators can be used to model anomalous
superdiffusion that describe particles move faster than
Brownian motion (e.g. the random walker remains in motion
without changing direction for a time that follows a Pareto-Lévy
distribution).

• Fractional time equation has a close connection to anomalous
subdiffusions that describe particles move slower than
Brownian motion (or the original underlying spatial motion), for
example, due to particle sticking and trapping.

Fractional time equation also arises in many other
circumenstances, including heat propogations in material with
themal memory.
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Subordinate Markov Process

Suppose S = {St ; t ≥ 0} is a subordinator independent of X
with Laplace exponent φ:

E
[
e−λSt

]
= e−tφ(λ).

There is a unique κ ≥ 0 and a measure ν(dx) with∫∞
0 (1 ∧ x)ν(dx) <∞ so that

φ(λ) = κλ+

∫ ∞
0

(1− e−λx )ν(dx).

XSt is a Markov process, called subordinate Markov process.
When X is symmetric, the infinitesimal generator of XSt is
Lφ := −φ(−L).

Hence u(t , x) := Ex [f (XSt )] solves ∂u
∂t = Lφu with

u(0, x) = f (x).
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Example: stable subordinator

When {St ; t ≥ 0} is a β-subordinator with 0 < β < 1 with
Laplace exponent φ(λ) = λβ, the infinitesiaml generator of XSt

is −(−L)β.

When X is Brownian motion in Rd , XSt is a rotationally
symmetric (2β)-stable process in Rd , whose infinitesimal
generator is −(−∆)β =: ∆β. It can also be expressed as

∆βf (x) = lim
ε→0

∫
{|y−x |>ε}

(f (y)− f (x))
c(d , α)

|y − x |d+2β dy

=

∫
Rd

(f (x + z)− f (x)−∇f (x) · z1{|z|≤1})
c(d , α)

|z|d+2β dz.

Space dependent non-local operator: for foundamental
solutions
• Symmetric case: C.-Kumagai 2003, 2008, 2010, · · ·
• Non-symmetric: C.-Zhang 2016, 2018, · · ·
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Back to time fractional equation

Suppose that L is the generator of a strong Markov process X .

Theorem (Baeumer-Meerschaert, 2001; Meerschaert-Scheffler,
2004): u(t , x) = Ex [f (XEt )] solves

∂βu(t , x)

∂tβ
= Lxu(t , x), u(0, x) = f (x).

Here Et = inf{r ≥ 0 : Sr > t} is the inverse of a β-subordinator
S that is independent of X .

Tools used: Mittag-Leffer functions, and the self-similarity of the
β-subordinator,

{Sλt ; t ≥ 0} = {λ1/βSt ; t ≥ 0} in distribution.
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Fractional time Poisson equation

Let 0 < β < 1. How to solve

∂βt u(t , x) = ∆u(t , x) + f (t , x)

with u(0, x) = 0?

We know from above p(t , x , y) = Ep0(Et , x , y) is the
fundamental solution of ∂βt u(t , x) = ∆u(t , x), where

p0(t , x , y) = (4πt)−d/2 exp
(
− |x−y |2

4t

)
. Define

q(t , x , y) = ∂1−β
t p(·, x , y)(t).

It is known in literature (Eidelman, Ivasyshen, Kouchubei,
Umarov, Saydamatov, . . . ) that

u(t , x) =

∫ t

0

∫
Rd

q(t − s, x , y)f (s, y)dyds

solves the Poisson equation. (Duhamel’s formula)
ψψψ
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Questions

• Solution in which sense?

• Positivity: If f (t , x , y) ≥ 0, is the solution u(t , x) ≥ 0?

•What happens for general spatial generator L and for general
time fractional derivatives ∂w

t ?
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Classical Caputo fractional derivative

∂βg(t)
∂tβ

=
d
dt

∫ t

0

1
Γ(1− β)

(t − s)−β ((g(s)− g(0)) ds

=

∫ t

0

1
Γ(1− β)

(t − s)−βg′(s)ds if g is Lipschitz,

where Γ(λ) =
∫∞

0 tλ−1e−tdt .

Connection to β-stable subordinator: St has no drift (i.e. κ = 0)
and its Lévy measure is ν(dx) = β

Γ(1−β)x−(1+β)dx . The tail
measure of ν give

w(x) := ν(x ,∞) =

∫ ∞
x

β

Γ(1− β)
y−(1+β)dy =

x−β

Γ(1− β)
.
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General time-fractional derivative

In applications and numerical approximations, there is a need
to consider more general fractional-time derivatives, for
example where its value at time t may depend only on the finite
range of the past from t − δ to t such as

d
dt

∫ t

(t−δ)+

(t − s)−β (f (s)− f (0)) ds.

Given a decreasing function w on (0,∞) with limx→∞w(x) = 0,
define

∂w
t f (t) =

d
dt

∫ t

0
w(t − s) (f (s)− f (0)) ds,
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Questions

(i) Existence and uniqueness for solution of

(κ∂t + ∂w
t ) u = Lu with u(0, x) = f (x),

and its probabilistic representation.

(ii) Given a strong Markov process X and subordinator S, what
equation does u(t , x) = Ex [f (XEt )] satisfy? Here

Et = inf{s > 0 : Ss > t}.
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Subordinator

Given a constant κ ≥ 0 and an unbounded right continuous
non-increasing function w(x) on (0,∞) with limx→∞w(x) = 0
and

∫∞
0 (1 ∧ x)(−dw(x)) <∞, there is a unique subordinator

{St ; t ≥ 0} with Laplace exponent

φ(λ) = κλ+

∫ ∞
0

(1− e−λx )(−dw(x)).

Laplace exponent: E
[
e−λSt

]
= e−tφ(λ).

Conversely, given a subordinator {St ; t ≥ 0}, there is a unique
constant κ ≥ 0 and a Lévy measure ν on (0,∞) satisfying∫∞

0 (1 ∧ x)ν(dx) <∞ so that its Laplace exponent is given by
above the display with w(x) = ν(x ,∞).
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Framework

From now on, we assume St is a subordinator with infinite Lévy
measure ν and possible drift κ ≥ 0. Define w(x) = ν(x ,∞).

Facts: Since ν(0,∞) =∞, t 7→ St is strictly increasing. Hence
the inverse subordinator Et is continuous in t .

Suppose that {Tt ; t ≥ 0} is a strongly continuous semigroup
with infinitesimal generator (L,D(L)) in some Banach space
(B, ‖ · ‖) with the property that supt>0 ‖Tt‖ <∞. Here ‖Tt‖
denotes the operator norm of the linear map Tt : B→ B.

E.g. (B, ‖ · ‖) = Lp(E ;µ) for p ≥ 1 or (C∞(E), ‖ · ‖∞).
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measure ν and possible drift κ ≥ 0. Define w(x) = ν(x ,∞).

Facts: Since ν(0,∞) =∞, t 7→ St is strictly increasing. Hence
the inverse subordinator Et is continuous in t .

Suppose that {Tt ; t ≥ 0} is a strongly continuous semigroup
with infinitesimal generator (L,D(L)) in some Banach space
(B, ‖ · ‖) with the property that supt>0 ‖Tt‖ <∞. Here ‖Tt‖
denotes the operator norm of the linear map Tt : B→ B.

E.g. (B, ‖ · ‖) = Lp(E ;µ) for p ≥ 1 or (C∞(E), ‖ · ‖∞).
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Main result

Theorem (C. 2017)

For every f ∈ D(L), u(t , x) := E [TEt f (x)] is the unique solution
in (B, ‖ · ‖) to

(κ∂t + ∂w
t ) u(t , x) = Lu(t , x) with u(0, x) = f (x).
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Remarks

(i) The assumption that f ∈ D(L) in the Theorem is to ensure
that all the integrals involved in the proof are absolutely
convergent in the Banach space B. This condition can be
relaxed if we formulate the time fractional equation in the weak
sense when the uniformly bounded strongly continuous
semigroup {Tt ; t ≥ 0} is symmetric in a Hilbert space L2(E ; m)
and so its quadratic form can be used to formulate weak
solutions. This is done in [CKKW1].

(ii) Special cases or related work: Meerschaert and Scheffler
(2008) and Kolokoltsov (2011)

(iii) There are very limited results on uniqueness.

(iv) One needs to be very careful when dealing with time
frictional equations due to nature of singular integrals.
Probabilistic representation turns out to be quite effective to
overcome these difficulties.
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Fundamental solution

When the uniformly bounded strongly continuous semigroup
{Tt ; t ≥ 0} has an integral kernel p0(t , x , y) with respect to
some measure m(dx), then there is a kernel p(t , x , y) so that

u(t , x) := E [TEt f (x)] =

∫
E

p(t , x , y)f (y)m(dy);

in other words,

p(t , x , y) := E [p0(Et , x , y)] =

∫ ∞
0

p0(s, x , y)dsP(Et ≤ s)

is the fundamental solution to the time fractional equation
(κ∂t + ∂w

t ) u = Lu.

In a recent work with Kim, Kumagai and Wang, two-sided
estimates on p(t , x , y) are obtained when κ = 0 and {Tt ; t ≥ 0}
is the transition semigroup of a diffusion process that satisfies
two-sided Gaussian-type estimates or of a stable-like process
on metric measure spaces.

Zhen-Qing Chen University of Washington Foundamental Solutions to Time fractional Poisson equations



Fundamental solution

When the uniformly bounded strongly continuous semigroup
{Tt ; t ≥ 0} has an integral kernel p0(t , x , y) with respect to
some measure m(dx), then there is a kernel p(t , x , y) so that

u(t , x) := E [TEt f (x)] =

∫
E

p(t , x , y)f (y)m(dy);

in other words,

p(t , x , y) := E [p0(Et , x , y)] =

∫ ∞
0

p0(s, x , y)dsP(Et ≤ s)

is the fundamental solution to the time fractional equation
(κ∂t + ∂w

t ) u = Lu.

In a recent work with Kim, Kumagai and Wang, two-sided
estimates on p(t , x , y) are obtained when κ = 0 and {Tt ; t ≥ 0}
is the transition semigroup of a diffusion process that satisfies
two-sided Gaussian-type estimates or of a stable-like process
on metric measure spaces.

Zhen-Qing Chen University of Washington Foundamental Solutions to Time fractional Poisson equations



Heat kernel estimates for L (particular cases)

p0(t , x , y) � t−d/αF (d(x , y)/t1/α).

1) F (r) = exp
(
−rα/(α−1)

)
for α ≥ 2: local case

• α = 2 when L =
∑d

i,j=1
∂
∂xi

(
aij(x) ∂

∂xj

)
with

λ−1I ≤ (aij(x)) ≤ λI on Rd ; Aronson 1967

• α > 2 when L is the Laplacian on Sierpinski gasket or carpet;
Barlow-Perkins 1988, Barlow-Bass 1992. E.g. two-dimensional
Sierpinski gasket, d = log 3/ log 2 and α = dw := log 5/ log 2.

2) F (r) = (1 + r)−d−α with α > 0: non-local case:
• symmetric stable-like process on Alfhors d-regular space E .
C.-Kumagai 2003 (α < 2), C.-Kumagai-Wang 2018 (α < dw ):

Lf (x) = p.v.
∫

E
(f (y)− f (x))

c(x , y)

|x − y |d+α
µ(dy).
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Fundamental solution

Particular case: St = β-subordinator, or Caputo derivative ∂βt .

Define

H≤1(t ,d(x , y)) =


t−βd/α, d < α,

t−β log
(

2tβ

d(x , y)α

)
, d = α,

= t−β/d(x , y)d−α, d > α,

H(c)
≥1 (t ,d(x , y)) =t−βd/α exp

(
− (d(x , y)α/tβ)1/(α−β)

)
,

H(j)
≥1(t ,d(x , y)) =tβ/d(x , y)d+α.
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Estimates of fundamental solution

Theorem (C.-Kim-Kumagai-Wang 2018)

(i) Suppose F (r) = exp(−rα/(α−1)) with α ≥ 2. Then

p(t , x , y) ' H≤1(t ,d(x , y)) if d(x , y) ≤ tβ/α,

p(t , x , y) � H(c)
≥1 (t ,d(x , y)) if d(x , y) ≥ tβ/α.

(ii) Suppose F (r) = (1 + r)−d−α. Then,

p(t , x , y) ' H≤1(t ,d(x , y)) if d(x , y) ≤ tβ/α,

p(t , x , y) ' H(j)
≥1(t ,d(x , y)) if d(x , y) ≥ t−β/α.

H≤1(t, d(x, y)) =


t−βd/α, d < α,

t−β log

(
2tβ

d(x, y)α

)
, d = α,

= t−β/d(x, y)d−α, d > α,

H(c)
≥1(t, d(x, y)) =t−βd/α exp

(
− (d(x, y)α/tβ )1/(α−β)

)
, H(j)

≥1(t, d(x, y)) = tβ/d(x, y)d+α
.
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Observation

When x 6= y , limt→0 p(t , x , y) = 0 but

lim
t→0

p(t , x , x) =∞.

p(t , x , y) is sub-exponential decay in d(x , y) in the local case
and polynomial decay in non-local case.
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Set up

Assume that {St ,P; t ≥ 0} is a driftless subordinatorwith infinite
Lévy measure ν and having bounded density p(r , ·) for each
r > 0. A sufficient condition for the latter is

lim
s→∞

φ(s)

ln(1 + s)
= lim

s→∞

1
ln(1 + s)

∫ ∞
0

(1− e−sx ) ν(dx) =∞.

(Hartman and Wintner’s condition.)

Suppose that {P0
t ; t ≥ 0} is a uniformly bounded strongly

continuous semigroup in some Banach space (B, ‖ · ‖) and
(L,D(L)) is its infinitesimal generator.
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Poisson equation

Theorem (C.-Kim-Kumagai-Wang, 2018+)

Let g ∈ D(L) and f (t , x) be a function defined on (0,T0]× E so
that for a.e. t ∈ (0,T0], f (t , ·) ∈ D(L) and

esssupt∈[0,T0]‖f (t , ·)‖+

∫ T0

0
‖Lf (t , ·)‖dt <∞.

The function

u(t , x) = E
[
P0

Et
g(x)

]
+ E

[∫ ∞
0

1{Sr<t}P0
r f (t − Sr , ·)(x)dr

]
= E

[
P0

Et
g(x)

]
+

∫ t

s=0

∫ ∞
r=0

P0
r f (t − s, ·)(x)p(r , s) dr ds

is the unique (strong) solution of ∂w
t u = Lu + f (t , x) on

(0,T0]× E with u(0, x) = g(x) in the following sense.
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Poisson equation

Theorem (C.-Kim-Kumagai-Wang, 2018+)

(i) u(t , ·) is well defined as an element in B for each t ∈ (0,T0]
such that supt∈(0,T0] ‖u(t , ·)‖ <∞, t 7→ u(t , x) is continuous in
(B, ‖ · ‖) and limt→0 ‖u(t , ·)− g‖ = 0.

(ii) For a.e. t ∈ (0,T0], u(t , ·) ∈ D(L) and Lu(t , ·) exists in the
Banach space B with

∫ T0
0 ‖Lu(t , ·)‖dt <∞.

(iii) For every T ∈ (0,T0],∫ T

0
w(T − t)(u(t , ·)− g) dt =

∫ T

0
(f (t , ·) + Lu(t , ·)) dt in B.

We also have corresponding result for weak solutions.
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Another fundamental solution

Suppose that (B, ‖ · ‖) = Lp(E ; ν) or C∞(E), and the semigroup
{P0

t ; t ≥ 0} has an integrable kernel p0(t , x , y) with respect to
some measure µ(dx) on E . Define

q(t , x , y) =

∫ ∞
0

p0(r , x , y)p(r , t)dr .

Then the unique solution in above theorem can be expressed
as

u(t , x) =

∫
E

p(t , x , y)g(y)µ(dy)+

∫ t

0

∫
E

q(s, x , y)f (t−s, y)µ(dy)ds.

(Recall p(t , x , y) = E [p0(Et , x , y)].)
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Remarks

• Positivity of q(t , x , y).

• Two-sided estimates of q(t , x , y).

• Stability of p(t , x , y) and q(t , x , y).

• An analogous probabilistic representation for solutions of
Poisson equation has been obtained recently by M. E.
Hernández-Hernández, V. N. Kolokoltsov and L. Toniazzi
(2017) and L. Toniazzi (2018) using a different approach and in
restrictive settings (Feller generator L in space Rd , using
Mittag-Leffer functions).
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A connection

Suppose S is a special Bernstein function; that is, λ 7→ λ/φ(λ)
is still a Bernstein function. Let S∗ be the subordinator with
Laplace expondent λ/φ(λ). Suppose St has density function
p(r , t).

Theorem (C.-Kim-Kumagai-Wang, 2018+)
For a.e. x 6= y ∈ E,

q(t , x , y) = ∂w∗
t p(·, x , y)(t)

in the sense that for all t > 0,∫ t

0
q(s, x , y)ds =

∫ t

0
w∗(t − s)p(s, x , y)ds.
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Estimate

Particular case: St = β-subordinator, or Caputo derivative ∂βt .

Define

H̃≤1(t ,d(x , y)) =


tβ−1−βd/α, d < 2α,

t−1−β log
(

2tβ

d(x , y)α

)
, d = 2α,

= t−1−β/d(x , y)d−2α, d > 2α,

H̃(c)
≥1 (t ,d(x , y)) =tβ−1−βd/α exp

(
− (d(x , y)α/tβ)1/(α−β)

)
,

H̃(j)
≥1(t ,d(x , y)) =t2β−1/d(x , y)d+α.
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Estimates of fundamental solution

Theorem (C.-Kim-Kumagai-Wang 2018+)

(i) Suppose F (r) = exp(−rα/(α−1)) with α ≥ 2. Then

q(t , x , y) ' H̃≤1(t ,d(x , y)) if d(x , y) ≤ tβ/α,

q(t , x , y) � H̃(c)
≥1 (t ,d(x , y)) if d(x , y) ≥ tβ/α.

(ii) Suppose F (r) = (1 + r)−d−α. Then,

q(t , x , y) ' H̃≤1(t ,d(x , y)) if d(x , y) ≤ tβ/α,

q(t , x , y) ' H̃(j)
≥1(t ,d(x , y)) if d(x , y) ≥ tβ/α.
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Where these formula come from?

Observations: Suppose g is locally Lipschitz on [0,∞).

(i) ∂w
t g(t) exists for a.e. t > 0 and

∂w
t g(t) =

∫ t

0
w(t − s)g′(s)ds.

(ii) Extending g(s) = g(0) for s < 0, then

∂w
t g(t) =

∫ ∞
0

(g(t − z)− g(t))ν(dz) = A∗g(t).

Here A∗ is the infinitesimal generator of the Lévy process −St .
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Space-time process

Key observation: −∂w
t + L is the infinitesimal generator of

(−St ,Xt ).

Suppose that u(t , x) is a solution to ∂w
t u = Lu + f (t , x) on

(0,T0]× E with u(0, x) = g(x). For each fixed T ∈ (0,T0],
consider u(T − St ,Xt ). Then

Mt = u(T − St ,Xt )−
∫ t

0
(−∂w

t + L)u(T − St ,Xt )dt

= u(T − St ,Xt ) +

∫ t

0
f (T − St ,Xt )dt

is a martingale. So ExM0 = ExMET . That is,

u(T , x) = Exg(XET ) + Ex

∫ ET

0
f (T − St ,Xt )dt

= EPET g(x) + E
∫ ∞

0
1{St<T}Pt f (T − St , ·)(x)dt .
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Approach

However, there is a problem!

We do not know a prior if u(T − t , x) is in the domain of the
generator −∂w

t + L.

To rigorously prove these formulas, we use a different approach
by studying the properties of subordinator and inverse
subordinator. Here is an example.

Theorem (C. 2017)

There is a Borel set N ⊂ (0,∞) having zero Lebesgue
measure such that for every t ∈ (0,∞) \ N , the inverse
subordinator Et has a density function given by

d
dr

P(Et ≤ r) =

∫ t

0
w(t − s)p(r , s)ds, r > 0.
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Why it is so: a plausible proof

For a > 0, let f = 1[0,a].

d
dt

P(St ≤ a) =
d
dt

P(S)
t f (0) = L(S)P(S)

t f (0)

=

∫ ∞
0

(
P(S)

t f (z)− P(S)
t f (0)

)
ν(dz)

=

∫ ∞
0

P(a− z < St ≤ a)dw(z)

= −
∫ ∞

0
w(z)dzP(a− z < St ≤ a)

= −
∫ a

0
w(z)p(t ,a− z)dz.

(Used integration by parts formula and the fact that
limz↓0 zw(z) = 0 and limz→∞w(z) = 0.) Then
P(Es ≤ r) = P(Sr > s) gives the formula.
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But ...

The indicator function f = 1[0,a] is not in the domain of the Feller
generator of the subordinator. Thus needs a different proof.
Take Laplace transform on both sides to verify.
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Examples

(i) When {St ; t ≥ 0} is a β-subordinator with 0 < β < 1 with
Laplace exponent φ(λ) = λβ, Then St has no drift (i.e. κ = 0)
and its Lévy measure is µ(dx) = β

Γ(1−β)x−(1+β)dx . Hence

w(x) := µ(x ,∞) =

∫ ∞
x

β

Γ(1− β)
y−(1+β)dy =

x−β

Γ(1− β)
.

Thus the time fractional derivative ∂w
t f is exactly the Caputo

derivative of order β. In this case, our Theorem recovers the
main result of Baeumer-Meerschaert (2001) and
Meerschaert-Scheffler (2004).
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Truncated stable-subordinator

(ii) A truncated β-stable subordinator {St ; t ≥ 0} is driftless and
has Lévy measure

µδ(dx) =
β

Γ(1− β)
x−(1+β)1(0,δ](x)dx

for some δ > 0. In this case,

wδ(x) := µδ(x ,∞) = 1{0<x≤δ}

∫ δ

x

β

Γ(1− β)
y−(1+β)dy

=
1

Γ(1− β)

(
x−β − δ−β

)
1(0,δ](x).

The corresponding the fractional derivative is

∂wδ
t f (t) :=

1
Γ(1− β)

d
dt

∫ t

(t−δ)+

(
(t − s)−β − δ−β

)
(f (s)− f (0))ds.
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Stability

Clearly, as limδ→∞wδ(x) = w(x) := 1
Γ(1−β)x−β. Consequently,

∂wδ
t f (t)→ ∂w

t f (t), the Caputo derivative of f of order β, in the
distributional sense as δ → 0. Using the probabilistic
representation in the main Theorem, one can deduce that as
δ →∞, the solution to the equation ∂wδ

t u = Lu with
u(0, x) = f (x) converges to the solution of ∂βt u = Lu with
u(0, x) = f (x).
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Stability

(iii) If we define

ηδ(r) =
Γ(2− β) δβ−1

β
wδ(r) = (1−β)δβ−1

(
x−β − δ−β

)
1(0,δ](x),

then ηδ(r) converges weakly to the Dirac measure concentrated
at 0 as δ → 0. So ∂ηδt f (t) converges to f ′(t) for every
differentiable f . It can be shown that the subordinator
corresponding to ηδ, that is, subordinator with Lévy measure

νδ(dx) :=
(1− β) δβ−1

β
x−(1+β)1(0,δ](x)dx ,

converges as δ → 0 to deterministic motion t moving at
constant speed 1. Using the main Theorem, one can show that
the solution to the equation ∂ηδt u(t , x) = Lu(t , x) with
u(0, x) = f (x) converges to the solution of the heat equation
∂tu = Lu with u(0, x) = f (x).
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Thank you!
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