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Flow Structure Interactions- Applications

Aerodynamics. Control of flutter. Flutter speed.

Subsonic, supersonic and transonic regimes;

Large space structures. Large and thin. Highly oscillatory.

Medical Sciences

Human respiration- minimize palatal flutter, treatment of apnea

Engineering

Oscillating Bridges and Buildings
Harvesting of energy-Windmills. Post flutter analysis and exchange
of energies.
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Applications -flow structure supersonic
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Applications-flow structure subsonic
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Outline

Physical goals -motivation.

Formulate the problem within mathematical setting -identify
mathematical problem to study.

PDE Models- Nonlinear Dynamics Hyperbolic /Hyperbolic-like
with an Interface. Euler eq. coupled with plate eq.

Role of Modeling supported by Numerics and Experiment.

Main Results

Representation as a wellposed Dynamical System (St ,X ).
Stability and long time behavior
Global attractors.
Control of the dynamics: stabilization and harvesting

Nonlocal Problems -mixed boundary conditions:Kutta
Joukovsky. Flutter and Finite Hilbert -Riesz Transforms.

Conclusions and Open Problems
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Goals and Challenges

Eliminate the flutter, if possible.

or control the onset of instability - flutter speed? Where? On the
structure.

post-flutter harvesting. Extract energy from post-onset LCO’s

Difficulties: The resulting PDE system has

No Dissipation

No Compactness

Degeneracy of Ellipticity in the Energy Function.[Supersonic]

Mixed -nonlocal- Boundary Conditions.
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Question: How to formulate a mathematical question pertinent to
these physical problems?

Answer: Given PDE model: study the following:

Generation of a nonlinear dynamical system (St ,X ).

Strong stability to equilibria

Uniform attraction of evolution to a finite dimensional set.

Control the resulting finite dimensional dynamical system -often
chaotic.

Harvesting energy: post-flutter analysis - LOC-Limit Oscillating
Cycles.
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PDE model

PDE Model-Flow / Structure Interaction.

E.H. Dowell Aeorelasticity of plates and shells, Nordhof 1975, 2004
V. Bolotin, Nonconservative Problems of Elasticity , Pergamon,1963
J.D Cole, L.P. Cook, Transonic aerodynamics, North Holland, 1986
A.V. Balakrishnan, Aeroelasticity; Continuum Theory , Springer
2012.

Experimental studies -wind tunnel:
NASA Lab at UCLA ,
AFOSR/NASA Workshop at UCLA 2011,
Earl H. Dowell and his group, Duke Univ.

Numerical studies:

E. Dowell and his group at Duke.
J. Howell, Carnegie Mellon.
F. Gazzola, Politecnico di Milano
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PDE Model.

Thin, flexible plate, moving with a velocity U (U = 1 normalised
speed of sound).

Ω is a closed, two-dimensional domain (smooth) in the x-y plane.

The unperturbed flow is in the negative x-direction.

U

z

xΩ

Γ

φ(x , y , z ; t) - velocity potential at a point, u(x , y , t) vertical
displacement.

Irena Lasiecka



Structure

Structural equation-u(t, x , y)

utt + ∆2u + f(u) = p0 + (∂t + U∂x )φ
∣∣
Ω

in Ω

Boundary conditions : BC (u) = Clamped on ∂Ω

Initial conditions: u(0) = u0 ∈ H2
0 (Ω), ut(0) = u1 ∈ L2(Ω)

p0 ∈ L2(Ω) is a static aerodynamic pressure on the plate surface.

f (u) is the nonlinearity -internal force f (u) = −[F(u), u], F(u) Airy’s
stress.

aeroelastic potential = trU (φ) = (∂t + U∂x )φ|Ω,
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Flow

Compressible, Navier Stokes in density ρ,velocity v and pressure p.
Isentropic, inviscid flow linearize around U. Velocity potential ∇φ = v.

Flow equation -φ(t, x , y , z)

(∂t + U∂x )2φ = ∆φ− ∂xφ∂
2
xφ in R3

+

BC : on Ω : ∂νφ
∣∣
z=0

= −(∂t + U∂x )u(x , y)) on Ω

Outside Ω : ∂νφ
∣∣
z=0

= 0 OR (∂t + U∂x )φ = 0, K − J.

Initial conditions : φ(t = 0) = φ0, φt(t = 0) = φ1

aeroelastic potential = trU (φ) = (∂t + U∂x )φ|Ω,

downwash = trU (u) = (∂t + U∂x )u
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PDE -system

A nonlinear plate and perturbed wave, coupled at the interface Ω ⊂ R2:



utt + ∆2u + f(u) = p0 + trU (φ)|Ω in Ω

BC (u) = Cantilever on ∂Ω

(∂t + U∂x )2φ = ∆φ− ∂xφ∂
2
xφ in R3

+

∂νφ
∣∣
z=0

= −trU (u)(x , y)) on Ω and trU (φ) = 0 outside Ω

u(t = 0) = u0, ut(t = 0) = u1; φ(t = 0) = φ0, φt(t = 0) = φ1

aeroelastic potential, downwash

f (u) = −[F(u), u] .
Two hyperbolic -like dynamics coupled on the interface Ω.
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Von Karman -Airy Stress function nonlinearity

f (u) = −[u,F(u)− F0]. F0 is in-plane loading .

[g , h] = gxx hyy + gyy hxx − 2gxy hxy is the von Karman bracket.

F(u) is the Airy Stress function, solves{
∆2v = −[u, u] in Ω

F(u) = ∂F(u)
∂ν = 0 on Γ

f (u) cubic, nonlocal f : H2(Ω)→ H−ε(Ω) large deflections

Nonlinearity in the model is critical for the analysis, particularly
post-flutter analysis.
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Goals:

Generation of dynamical system

Stabilization and Control

Expectations: based on experimental studies see - Dowell-McHugh
2016, Kasemi 2018, Tang 2016,Dowell- Saga 2019

Elimination of the flutter at the subsonic level U < 1

Asymptotic reduction of structural dynamics to a FD attracting
sets (chaotic). Harvesting the energy from LCO’s.

Mathematical challenges:

lack of active dissipation on the flow and the structure;

lack of compactness/regularity;

potential degeneracy of the energy function.

Mixed boundary conditions
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Work done in the past

Wellposedness of finite energy solutions:

Regularized Models- containing inertial-rotational forces, γ∆utt

added. Implies ut ∈ C(H1(Ω))
Strongly damped plate equation: regularizing effect is parabolic :
∆ut added to the model. Implies ut ∈ L2(H1(Ω))

In all these cases ut ∈ H1(Ω) simplifies the analysis. However the
model does not represent physical situation. Must consider the
model without any diffusion

Flutter Analysis: typically based on fully linear models to determine
onset conditions of the flutter. Rather than large displacement
nonlinear effects responsible for post-flutter dynamics -LOC
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Why rotational forces model is inappropriate for studying stabilization of
flutter.?

FACT: Experimental finding: dispersion [flow] ”stabilizes” the
structure.

What does it say about modeling.?

This is impossible with rotational forces accounted for; i.e.∆utt added.

utt + γ∆utt + ∆2u + f (u) = trU (Φ)

HERE IS WHY.
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Hidden stabilizing effect of the flow.

utt + ∆2u + f (u) = trUΦ

becomes nonlinear PDE with a delay

utt + ∆2u + f (u) = −trU(u) + q(u, t, x, y)

q(u, t, x , y) =

∫ t∗

0

ds

∫ 2π

0

dθD2(u(x−(U+sinθ)s, y−scosθ, t−s),DELAY

utt + ut︸︷︷︸
stabilizes

+∆2u + f (u) = −Uux + q(u, t, x , y)︸ ︷︷ ︸
destabilizes
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Rotational model:

utt − γ∆utt + ∆2u + f (u) = −trUΦ becomes

utt−γ∆utt + ∆2u + f (u) = −trU(u) + q(u, t.x.y)

utt − γ∆utt + ut︸︷︷︸
does not stabilize

+∆2u + f (u) = Uux + q(u, t, x , y)︸ ︷︷ ︸
destabilizes

utt − γ∆utt + ut − γ∆ut︸ ︷︷ ︸
stabilizes

+∆2u + f (u) = Uux + q(u, t, x , y)︸ ︷︷ ︸
destabilizes

Conclusion: To stabilize structure : needs to add ∆ut . Flow does
not harvest such term. Flow does not stabilize the rotational
model. Rotational or diffusive model inappropriate for modeling
flutter.
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Conclusions

1 Structural model must be irrotational and nonlinear [large
displacements] -confirming the experiment.

2 Rotational model yields smoother solutions by adding ONE
DERIVATIVE making f (u) compact. Simplifies the analysis
however not physical.

3 The original model brings aboard interesting mathematics:
harmonic analysis, f (u) becomes supercritical
non dissipative, lack of Lyapunov dynamical system theory: Uux

PDE dynamics with the delay: q(u) and its destabilizing effects.
Lack of compactness, lack of regularity.

Gives rise to NEW Techniques

PDE, harmonic and microlocal analysis, weak Hardy spaces,

Dynamical Systems Theory for Non-Dissipative systems.

Mixed-nonlocal boundary conditions.Nonlocal analysis enters.
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Main Results- Overview for Neuman BC

Existence and Hadamard wellposedness of finite energy solutions .

Solutions are bounded for ALL TIMES. - CRITICAL role of
nonlinearity. (False for the linearization)

Subsonic case: with the feedback control damping acting on the
panel subject to clamped BC all solutions stabilize to the stationary
states.

Conclusion: Flutter can be eliminated

Supersonic and subsonic case: With the flow data compactly
supported all weak solutions of the structure without any
dissipation converge to a finite dimensional set .

Conclusion: Undamped dynamics is finite dimensional
asymptotically.
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Previous analysis for regularized- parabolic like models.

Analysis of the original model: Critical role of

Hyperbolicity-propagation of stability harvested from the flow.

Nonlinearity at the critical/supercritical level. Compensated
compactness/harmonic analysis.

Sharp Trace Hyperbolic Theory -carriers of propagation

New tools in dynamical systems and the theory of attractors.

Stability out of a Thin Air.
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Model: Energies

Plate Epl (t) =
1

2

(
||ut ||2 + ||∆u||2 + ||∆F(u)||2

)

Flow: Efl (t) =
1

2

(
||φt ||2 + ||∇φ||2−U2||∂xφ||2

)

Interactive: Eint(t) = 2U < ut , γ[φx ] >∂D

Epl (t) + Efl (t) + Eint(t) = Constant
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Total Energy -why it is interesting?

E(t) = Epl (t) + Efl (t) + Eint(t).

Balance of Energy: E(t) = E(s) NO DISSIPATION.

Hidden dissipation - dispersive effects to account for.

U < 1 , Efl =
1

2

(
||φt ||2 + ||∇φ||2−U2||∂xφ||2

)
∼ ||φt ||2 + ||∇φ||2

U = 1, Efl ∼ ||φt ||2 + ||∂zφ||2 + ||∂yφ||2 + 0 · ||∂xφ||2

U > 1, Efl ∼ ||φt ||2 + ||∂zφ||2 + ||∂yφ||2−(U − 1)||∂xφ||2
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Nonlinear Semigroup -Generation

Neumann data for the Flow.

Theorem (J. Webster,NA 2011, Chueshov, I.L, Webster 2013 JDE)

Flow-structure interaction generates a continuous nonlinear
semigroup

St : H → H = H2
0 (Ω)× L2(Ω)× H1(D)× L2(D)

Semigroup St is bounded for all t > 0 (U < 1 ).

For compatible and suitably smooth initial data the corresponding
solutions are smooth and global.
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Main Result - Subsonic and Supersonic

Theorem (Finite dimensional attracting set, CMPDE 2014)

Let U 6= 1, Consider plate solutions in Hpl = H2
0 (Ω)× L2(Ω). Then,

there exists a compact set U ∈ H3 × H2 ⊂ Hpl of finite fractal
dimension such that

limt→∞dist{(u(t), ut(t)),U} =

limt→∞infu0,u1∈U [||u(t)− u0||22,Ω + ||ut(t)− u1||20,Ω] = 0

for all compactly supported initial conditions corresponding to
the flow.
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Strong Stability- Subsonic case

N denotes stationary solutions. Assume it is finite. (generically true.
Can be eliminated :Haraux, Lojasiewicz lemma:)

Theorem (Stability, U < 1 and k > k0 > 0, SIMA 2016)

Let U < 1. Then any weak solution with compactly supported flow
initial data stabilizes to a stationary set. There exist
(u0, u1,Φ0,Φ1) ∈ N such that for all R > 0.

limt→∞||u(t)− u0||22,Ω + ||ut(t)− u1||20,Ω = 0

limt→∞||Φ(t)− Φ0||21,B(R) + ||Φt(t)− Φ1||20,B(R) = 0

where B(R) denotes a ball of radius R.

CONSEQUENCE: Flutter can be eliminated by applying damping
to the structure only. Nonlinear effects are critical

Irena Lasiecka



Irena Lasiecka



Lyapunov stability with a damping
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Convergence to an equilibrium
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convergence to an equilibrium
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Convergence to a non-trivial steady state

Irena Lasiecka



Buckling and Convergence to two different
non-trivial steady states
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Convergence to a limit cycle
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Convergence to a limit cycle. Flutter
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PROOFS given in

THM 1: Wellposedness of Energy Solutions U ∈ [0, 1) ∪ (1,∞)
JDE 2013-I. Chueshov,IL, J.Webster
THM 2: Attracting Sets for the Structure U ∈ [0, 1) ∪ (1,∞)
CMPDE 2014-I. Chueshov,IL,J. Webster
THM 3: Strong Stability for the Flow-Structure U ∈ [0, 1)
SIMA 2016- I.L. J.Webster

Review Paper: Mathematical Theory of Flow Structure Interaction
AMO 2016 -I.Chueshov, E. Dowell, I.L. J. Webster.
Oberwolfach Seminars: Flow-plate interactions: stabilization and
control. Oberwolfach Semin., 48, Birkhauser-Springer, 2018. I.L.
and J. Webster
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Oberwolfach Seminars -Springer-Birkhauser, 2018
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Challenges-Why it is interesting.

Mathematical Reasons:

Supercritical nonlinearity.

A ”natural” decoupling of PDE components does not work?

”Classical dynamical system methodology ” fails. New ”non
dissipative” theory developed in I.Chueshov, I.L. Springer’s
Monograph 2010.

Working with the correct PDE model [nonlinear, irrotational and
non-diffusive] solves Flutter problem
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Natural PDE Splitting : Good Idea which Does not
Work

”Loosing” derivatives: R. Triggiani, D. Tataru : 1993-1999

Flow

∣∣∣−→φ (T )
∣∣∣
H
→ 0

(φ, φt) ∈ H2/3 × H−1/3

−→
φ (0)

∂φ

∂ν
= ut + Uux ∈ L2

Plate (u, ut) ∈ H5/3 × H−1/3

utt + ∆2u + f (u) = Φt + UΦx ∈ H−1/3

Loss of
1

3
derivative

Lopatiniski condition violated
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Hyperbolic Neumann map

Why are we ”loosing” derivatives?

Φtt = ∆Φ in D × (0,T ), Φ(0) = Φt(0) = 0

∂νΦ = g on ∂D × (0,T )

g → (Φ,Φt) Hyperbolic Neumann map Nh

Nhg ≡ (Φ,Φt), Lopatinski fails

Nh : L2(L2(∂D))→ C (H2/3(D)× H−1/3(D))

Loss of 1/3 derivative when dimension of D > 1 .
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Consequences

When ut ∈ H1(Ω) [regularized models] then g = ut + Uux ∈ H1 and

Ng ∈ K − compact ⊂ H1 × L2

When ut ∈ L2(Ω) then g ∈ L2 and

Ng ∈ H2/3(D)× H−1/3(D)

Loss of 1/3 derivative when dimension of D > 1
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Wellposedness : Energy function

E (t) = Eu(t) + EΦ(t) + Eint(t)

Eu(t) =

∫
Γ

[|ut |2 + |∆u|2 + |∆F (u)|2]dΓ

EΦ(t) =

∫
Ω

[|Φt |2 +

∫
Ω

[|∇Φ|2−U|Φx|2]dΩ

Eint(t) = U

∫
Γ

Φux dΓ

Energy balance : E (t) = E (s) for all s, t

EΦ may degenerate when U > 1 (supersonic)

∆−UD2
x = (1−U)D2

x + D2
y + D2

z

E (t) is not necessarly positive. (Eint -indefinite ).
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Properties of the Energy

EΦ(t) with U > 1 is non-positive -”hyperbolic type”

Eint(t) has indefinite sign , however we have energy balance

EΦ(t) + Epl (t) + Eint(t) = Constant, t ∈ R

Bad Energy, Good Energy Balance
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Supersonic energy

E (t) = Eu(t) + EΦ(t) + Eint(t)

Eu(t) =

∫
Ω

[|ut |2 + |∆u|2 + |∆F (u)|2], Eint(t) = U

∫
Ω

Φx (t)u(t)

EΦ(t) =

∫
Ω

[|Φt(t) + U
∂

∂x
Φ(t)|2 + |∇Φ(t)|2]dΩ

Energy relation : E (t) = E (s)−U

∫ t

s

∫
Γ

(utΦx |Γ + Uux Φx |Γ)dxds

Good Energy, Bad Energy Balance
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Properties of supersonic energy

Dissipation integral of indefinite sign and not defined for finite
energy solutions -

< ut ,Φx >∂D

Φx |∂D not defined in L2(∂D) for Φ ∈ H1(D)

< ut ,Φx >∂D ∼ L2 · H−1/2????

Loss of dissipativity and loss of regularity. NOT A GOOD SPELL.
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Plate-Structure. Nonlinearity becomes supercritical (ut ∈ L2)

Flow- Interface traces not defined on the energy space .

Harmonic Analysis and Microlocal Analysis Enter the Game.

1 to deal with super linearity of the plate motion and

2 to propagate stability harvested by the sheer flow

Prove Two Regularity Results : (1) for the flow and (2) for the
structure
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For the flow

Lemma (Trace Regularity → compensated compactness)

(Microlocal)

Φ ∈ H1(Q), and ∂νΦ ∈ L2(Σ)⇒ Φt |Γ ∈ L2(0,T ; H−1/2(Γ))

Φt ∈ L2(Ω) does not allow for application of the trace operator.

New trace estimates for aeroelastic dynamics to be discovered.
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On the Proof: Hidden Regularity/Microlocal III

R

R
1

3

T

T1

2

C

|η|

σ

In R3-hyperbolic - L2 regularity, In R1-elliptic - L2 regularity
In C-characteristic - H−1/2 regularity -loss of regularity.
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For the structure:
Harmonic analysis- supercritical nonlinearity

utt + ∆u = [F(u), u], F(u) = ∆−2[u, u]

[u, v ] : H2 × H2 → L1 ⊂ H−ε ⇒

F(u) : H2 × H2 → H3−ε ⇒

[F(u), u] : H2 × H2 → H−ε, ε > 0

Theorem ( I.L. D.Tataru- Airy’s stress function)

[u, v ] : H2 × H2 → H1[Hardy = F 1,0]⇒

F(u) : H2 × H2 →W 2,∞ ⇒

[F(u), u] : H2 × H2 → L2

There is no loss of ε. harmonic analysis+compensated compactness
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Stability and reduction to finite dimensional model:
STRATEGY

1 STEP 1: k > 0. Strong convergence to the set N of orbits driven
by smooth structural data

Use dispersion estimates for the flow driven by the initial conditions
Analysis of the coupling via Neumann map: ”tour de force ” loosing
derivatives . Strong stability for smooth initial data. PDE
decoupling (k > 0 ) .

St(Yr )→ N ,Yr ∈ D(A)

2 STEP 2: k > 0 Uniform Hadamard sensitivity uniformly in t > 0
when ||Yr − Y || ≤ ε.

||St(Yr )− St(Y )|| ≤ εc(

∫ t

0

||ut ||)

Controlling the rate of attraction ||ut || ∈ L1?. We only know
||ut || ∈ L2.
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STEP 3 : k ≥ 0 Back to the structure. Construct attractor A for
the structure only.
Big Gun. No dissipation, no compactness. But ”hidden”
dissipation harvested from the flow and ”hidden” compactness.

U(t)(B)→ A . Prove smoothness on that attractor A .
Tool: Quasistability estimate. Use backward invariance.

|SU
T (u)− SU

T (v)|H ≤ 1/10|u − v |H + CT sup0,T |SU
t u − SU

t v |H1

for u, v ∈ A, H ⊂ H1 compact embedding. H1 ∼ [D(Aε)]′

STEP 4:

either U(t) enters A -OK since smooth -go to Step 1.
or approaches A . Question: at which rate?
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STEP 5, k ≥ 0 : Prove an existence of exponential attractor
Ae ⊃ A.

dist(U(t)B,Ae) ≤ ce−ωt

The rate is OK, but smoothness???. Difficulty: Ae is only
positively invariant.

STEP 6, k ≥ 0 ; Prove smoothness of the exponential attractor Ae .
Using quasi stability estimate for a suitable decomposition of the
flow which filters out initial data (Zelik, Vishik). Attraction at the
L1 rate to a smooth set. Go back to Step 1.

Irena Lasiecka



BIG GUN - for Step 3.
Uniform Convergence with respect to Y0 ∈ BH for the structure
only.
Hidden compactness of the delay term q(u) and hidden dissipation
due to the flow : the term ut appears ”out of the blue”.
No dissipation on the flow. Study of systems with delay via
Quasistability estimate. The attracting set is smooth, possibly
chaotic.

U = (u, ut)

Attracting Set
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k = 0. Hidden stabilizing effect of the flow

utt + ∆2u = [F(u), u] + p(u, t, x , y)

p(u, t, x , y) ≡ −(ut + Uux) + q(u, t, x , y)

utt + ut + ∆2u = [F(u), u] + Uux + q(u, t, x , y)

q(u, t, x , y) =

∫ t∗

0

ds

∫ 2π

0

dθD2(u(x − (U + sinθ)s, y − scosθ, t − s)

D1 = e−iθ · ∇⊥x,y = sinθ
∂

∂x
+ cosθ

∂

∂y

t∗ = inf {t, ~x(U, θ, s) /∈ Γ, ~x ∈ Γ}, ~x ≡ (x − s(U + sinθ), y − scosθ)
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Attractor for the plate, U 6= 1

Let k ≥ 0, no damping .Big Gun leads to

Theorem ( Chueshov, I.L. Webster CMPDE 2014 )

Let U 6= 1. Consider plate solutions in Hpl = H2
0 (Ω)× L2(Ω). Then,

there exists a compact set U ∈ Hpl of finite fractal dimension such
that

limt→∞dist{(u(t), ut(t)),U} =

lit→∞infu0,u1∈U [||u(t)− u0||22,Ω + ||ut(t)− u1||20,Ω] = 0

for all compactly supported initial conditions corresponding to
the flow.

There exists compact ”attractor” for the plate .

The analysis reduced to a finite dimensional invariant set
Determination of the fluttter speed
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Uniform Hadamard for the full system

Y = (Φ,Φt , u, ut)

|Y (t)− Ym(t)2|H ≤ C |d|L1 |Y (0)− Ym(0)|2H
d(t) = |ut(t)|Ypl

+ |um,t(t)|Ypl

We know only that |ut |L2(0,∞) + |um,t |L2(0,t∞ <∞

We need d ∈ L1(0,∞) rather than d ∈ L2(0,∞).
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Dychotomy Principle

The trajectory U = (u, ut) EITHER enters the attractor
OR approaches the attractor with L1(0,∞) rate.

In the first scenario - previously developed ”smooth analysis” applies.
In the second scenario: approximate the trajectory by smooth and L1

convergent solutions. Leads to exponential attractors.

Exponential attractor A ⊂ Ae : convergence to the attractor is
exponential. No information on the smoothness.

Regular attractor A : Smooth but no information on the rate of
convergence.

A. Miranville and S. Zelik: Survey article in the Handbook on DE
-2010. Closing this gap (even for discrete dynamical systems ) is in
general open problem.

Finally -Exponential attractor Ae for the structure is
SMOOTH.
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A
smooth

Ae

smooth? YES

dist(U(t),Ae) ≤ Ce−ωt

U = (u, ut)

e−ωt
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Back to the flow

Flow provides ”hidden” dissipation

Structure - ”plate” provides ”hidden” asymptotic regularity on
the attracting set.

Propagating these properties through the entire system -main
challenge of the problem.
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SUBSONIC FLOW:

Flutter can be eliminated by applying damping to the structure.

SUPERSONIC FLOW:

Flow has stabilizing effect.With no damping on the structure
solutions are driven to a finite dimensional set. PDE dynamics
reduced to ODE dynamics. Structure of the set : chaotic, periodic
orbits, limit cycles.
Finite dimensional Boundary Control Theory: LQG, H-J
theory.
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Important Message

Stabilizing effect of the flow exhibited only for a correct model
-

nonlinear,

without rotational inertia,

without diffusive effects.
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K-J boundary conditions: zero pressure off the wing
and free-clamped on the structure

A nonlinear plate and perturbed wave, coupled at the interface Ω ⊂ R2:


utt + ∆2u + f(u) = p0 + trU (φ)|Ω in Ω

BC (u) = Clamped on ∂Ω

(∂t + U∂x )2φ = ∆φ in R3
+

∂νφ
∣∣
z=0

= −trU (u) on Ω, φt + Uφx = 0 outside Ω

f (u) = −[F(u), u], tr(u) ≡ ut + Uux

Work in progress
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Further Directions.

TRANSONIC CASE. [ U = 1]. Numerical evidence of shocks .
Analysis must account for nonlinearity of the flow.

Kutta Jukovsky boundary conditions and U ≥ 1.

φt + Uφx = 0 off the wing .

Mathematical interest: invertibility of finite Hilbert transforms.
Lp theory for p 6= 2.
Chueshov, I.L, Webster - DCDS 2014.

Free -clamped boundary conditions on the plate. Experiments
indicate hysteresis -not predicted by the present model. Use NSE to
model the flow.

Nonlinear Flow equation: NS or Euler
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