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The Definite Integral
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                                                           The Riemann Integral                                                            
What is area? We are all familiar with determining the area of simple geometric figures such as rectangles and triangles. However, how do we determine the area of a region R whose boundary may consist of non rectilinear curves, such as a parabola?  To see how this could be done let us consider the following process.
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as seen in the figure below.
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We will obtain the area of the region R as the limit of a sum of areas of rectangles as follows: First, we divide the interval 
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 respectively. This process divides the region R into 
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strips (see the figure below).
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Next, let's approximate each strip by a rectangle with height equal to the height of the curve 
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at some arbitrary point in the subinterval. That is, for the first subinterval 
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Similarly, for each remaining subinterval 
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 we will choose some 
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The approximate area of the region R is then the sum of these rectangular areas, denoted by 
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Depending on what points we select for the 
[image: image30.wmf],

'

*

s

x

k

our estimate may be too large or too small. For example, if we choose each 
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to be the point in its subinterval giving the maximum height, we will overestimate the area of R, called the Upper Sum (see the figure below).
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On the other hand, if we choose each 
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to be the point in its subinterval giving the minimum height, we will underestimate the area of R, called the Lower Sum (see the figure below).
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Now, if the sum 
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 chosen, we then define the area of the region R to be precisely this limit. Note the beauty of this definition. Since we really do not know what area really is, we let our intuition develop a process that we legitimize as the analytic meaning of area under a continuous curve. We will now formalize this process in the following development, called the Riemann Integral.

Riemann-Darboux Sums
Def: P is said to be a partition of the closed interval 
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Def: Let 
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Def: A partition 
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Def: Let  f  be a function bounded on 
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Def: Let  f  be a function bounded on 
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The components that make up the Definite/Riemann Integral are named as follows:


   Upper Limit of Integration
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Integral Sign
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Variable of Integration




Lower Limit of Integration

Remark: The limit 
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 The right end points of  the subintervals corresponding the regular partition
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Note that we always have 
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There is an alternative but logically equivalent definition of the integral that is conceptually easier to understand and that uses Darboux sums.

Def: Let f  be a function bounded on 
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Remark:  The Riemann integral or Darboux integral determine the same I. To designate this integral, we will use the phrases Riemannn integral, Darboux integral or, simply, the definite integral, at our discretion.

We now state the major theorem on the existence of the Riemann/Darboux integral. We shall not prove this theorem since the proof  involves ideas and techniques that are covered in a more advanced course.

Integrability Theorem:  Let  f  be piecewise continuous 
 on 
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Using the Integrability Theorem, we clearly have the following theorem.

Riemann Regular Integrability Theorem: Let  f  be continuous on 
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Some conditions that are equivalent to integrability are given in the following theorem.
Riemann-Darboux  Condition Theorem:  Let 
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Example:  Not all functions are Riemann integrable. Consider 
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Thus, for the Dirichlet function, we have shown that 
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The following theorem shows us that not all functions have to be continuous in order to be integrable.

Theorem:  Every 
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In summary, we have 
[image: image161.wmf](

)

(

)

(

)

(

)

(

)

,

0

a

f

b

f

P

P

L

P

U

f

f

-

£

-

£

which implies 
[image: image162.wmf]f

is integrable over 
[image: image163.wmf][

]

.

,

b

a

   (
Example:  Using the above definition of the Riemann integral, show that the area under the curve 
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Proof:  First let us consider some preliminary remarks so that the proof is easier to understand. Recall, for 
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We now begin our proof.

Let 
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Observe that, 
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This series is called a telescoping series because of the way the terms in the sum cancel.

Summing (*) from 
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Using our observation in (**) and dividing by 
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This clearly implies that
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Exercises: Let 
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Rewriting our last example using our new notation, we obtain  
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  If we look carefully at the result of this example of determining area under a graph, we are  led to the  interesting observation that there seems to be a relationship between the process of  definite integration, which is just a fancy way of performing sums, and the process of differentiation. That is, we see that an antiderivative of  the integrand 
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The proof of the Fundamental Theorem of Integral Calculus will be divided into two parts. The first part, called the First Fundamental theorem of Integral Calculus, shows us how to differentiate a variable integral.

The second part, called the Second Fundamental Theorem of  Integral Calculus, shows us that one can compute the definite integral of a continous function by using any one of its antiderivatives. This part of the theorem has many practical applications, because it tremendously simplifies the computation of definite integrals. 

The first published statement and proof of a restricted version of the Fundamental Theorem of Integral Calculus was given by James Gregory (1638–1675). Isaac Barrow  (1630–1677)  proved the first completely general version of this theorem.  Barrow's student Sir Isaac Newton  (1643–1727) completed the development of the surrounding mathematical theory, while Gottfried Leibniz (1646–1716) systematized the knowledge into a calculus involving infinitesimal quantities.
Lemma:  Let 
[image: image218.wmf]Î

B

A

,

ℝ. If  
[image: image219.wmf]0

>

"

e


a) 
[image: image220.wmf].

B

A

B

A

³

Þ

>

+

e


b) 
[image: image221.wmf].

B

A

B

A

³

Þ

-

>

e
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Proof of 2:  By hypothesis, 
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Combining a) and b), we obtain 
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Boundedness Rule.
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[image: image245.wmf](

)

(

)

(

)

(

)

(

)

(

)

.

a

b

f

a

b

a

b

a

b

M

f

a

b

m

a

b

b

a

b

a

-

<

<

-

Þ

-

<

-

£

£

-

<

-

ò

ò

b

a

b

a


3. 
[image: image246.wmf](

)

a

b

c

f

c

f

b

a

-

=

Þ

=

ò


[image: image247.wmf]Ü

Constant Rule.
4. 
[image: image248.wmf]0

0

³

Þ

³

ò

b

a

f

f



 EMBED Equation.3  [image: image249.wmf]Ü

Non-Negative Rule.

Proof:  By the Max-Min Rule,  
[image: image250.wmf](

)

.

0

0

³

Þ

³

-

³

ò

ò

b

a

b

a

f

a

b

m

f

   (
5. 
[image: image251.wmf]0

0

>

Þ

>

ò

b

a

f

f



 EMBED Equation.3  [image: image252.wmf]Ü

Positive Rule.
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Linear Rule. This is equivalent to the Sum Rule together with the 

Scalar Multiple Rule.
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Zero Width Interval Rule.
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Order Integration Rule.
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Fundamental Theorem of Integral Calculus (FTIC)
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c) Since differentiability implies continuity, items  a) and b) imply that 
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Second Fundamental Theorem of Integral Calculus: Let 
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Stated another way, the Second FTIC says
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Properties of the Riemann Integral (Continued)
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 Leibniz Integral Rule.
Proof:  By the First FTIC and the Chain Rule, we have 
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 Zero Rule.

Proof:  The “if part” is trivial. Therefore, we shall only prove the “only if” part. So, assume that 
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First Mean Value Theorem for Integrals (First MVTI).

Proof:  The theorem is trivial if 
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Periodic Rule for Integrals.
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Applications of the Second FTIC

The Second FTIC can be restated in this way:
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A function such as 
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is called an accumulation function because it accumulates area under the graph of its derivatives for 
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Position as an Accumulation Function:

Exercise 1: An object moves along a coordinate line with velocity 
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 is 2 units to the left of the origin.

a) Find the position of the object 3 seconds later.

b) Find the total distance traveled by the object during those 3 seconds.

Exercise 2: An object moves along a coordinate line with velocity 
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 is 1 unit to the right of the origin.

a) Find the position of the object 
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 seconds later.

b) Find the total distance traveled by the object during those 
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 seconds.

Some Quantity as an Accumulation Function:

If 
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Exercise 3: Water leaks out of a 55-gallon tank at the rate 
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 in gallons. Initially, the tank is full.

a) How much water leaks out of the tank between 
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 hours?

b) How long does it take until there are just 5 gallons remaining in the tank?

Exercise 4:  Water leaks out of a 200-gallon tank at the rate 
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a) How much water leaks out of the tank between 
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 and 
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 hours?

b) How long does it take until the tank is drained completely?
Finding Area between TwoCurves

Slicing, Approximating and Integrating with Respect to the X-Axis

Consider two curves defined by the two functions 
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 We want to compute the area of the region 
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If we are given two curves defined by the two functions  
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 then we employ the same process as above only with respect to the 
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 as shown in Figure 3 and Figure 4 below.

Slicing, Approximating and Integrating with Respect to the Y-Axis
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In this case, we define 
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Exercise 1:  Determine the area of the region enclosed by 
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First of all, just what do we mean by “area enclosed by”.  This means that the region we’re interested in must have one of the two curves on every boundary of the region.  So, here is a graph of the two functions with the enclosed region shaded.
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Exercise 2:  Determine the area of the region enclosed 
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Exercise 3: Determine the area of the region bounded 
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Here is a sketch of the region.
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Determining Volume
Volumes by Cross Sections 

A cross section of a solid is a plane figure obtained by the intersection of that solid with a plane. The cross section of an object therefore represents an infinitesimal "slice" of a solid, and may be different depending on the orientation of the slicing plane. While the cross section of a sphere is always a disk, the cross section of a cube may be a square, hexagon, or other shape.  Some other common cross sections are rectangles, triangles, semicircles, and   trapezoids.
Integration allows us to calculate the volumes of such solids. That is, we may define the volume of a solid as a limit of a Riemann sum of cross sectional areas 
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This is similar to the way we defined the area between two curves.  Let 
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in the plane through the point x and perpendicular to the x-axis, as seen in Figure (a) below. The volume of 
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is then given by Formula (a) below.
	[image: image563.jpg](a) Cross sections
‘perpendicular to x-axis
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 Figure (a)                     
Formula (a)
On the other hand,   let 
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 be a solid that lies between 
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Let the continuous function 
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represent the cross-sectional area of 
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in the plane through the point y and perpendicular to the y-axis as seen in Figure (b) below. The volume of 
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is then given by Formula (b) below.
	[image: image571.jpg](b) Cross sections
] perpendicular to y-axis
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 Figure (b)                     
Formula (b)
Example:  Find the volume of the solid shown below. The base of the solid is the region bounded by the lines 
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and 
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The cross sections perpendicular to the x-axis are equilateral triangles.
[image: image575.jpg]x
Cross sections are equilateral triangles.
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Solution: The base of each equilateral triangular cross section, area of each equilateral triangular cross section and corresponding volume element of the solid are 

Base of  Triangular Cross Section: 
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Cross Sectional Area of Equilateral Triangle:  
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Volume Element:  
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Because x ranges from 0 to 2, the volume of the solid is 
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Now that we have the definition of volume, the challenging part is to find the function of the area of a given cross section. This process is quite similar to finding the area between curves.
Solids of Revolution

Most volume problems that we will encounter will require us to calculate the volume of a solid of revolution. These are solids that are obtained when a plane region is rotated about some line. A typical volume problem would ask, "Find the volume of the solid generated by rotating the region bounded by the some curve(s) about some specified line." Since the region is rotated about a specific line, the solid obtained by this rotation will have a disk-shaped cross-section. We know from simple geometry that the area of a circle is given by 
[image: image581.wmf].
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 For each cross-sectional disk, the radius is determined by the curves that bound the region. If we sketch the region bounded by the given curves, we can easily find a function to determine the radius of the cross-sectional disk at point x.
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For example, the figures above illustrates this concept. The figure to the left shows the region bounded by the curve 
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and the x-axis and the lines 
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and 
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. The figure in the center shows the 3-dimensional solid that is formed when the region from the first figure is rotated about the x-axis. The figure to the right shows a typical cross-sectional disk. A disk for a given value 
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 between 0 and 2 will have a radius of 
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. The area of the disk is given by 
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or equivalently, 
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.  Once we find the area function, we simply integrate from 
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to 
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to find the volume. In this example, the volume 
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in question is given by
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Variations on Volume Problems

There are two variations in problems of solids of revolution that we will consider. The first factor that can vary in this type of volume problem is the axis of rotation. What if the region from the figure above was rotated about the y-axis rather than the x-axis? We would end up with a different function for the radius of the cross-sectional disk. The function would be written with respect to 
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 rather than 
[image: image597.wmf]x

, so we would have to integrate with respect to 
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In general, we can use the following rule.

If the region bounded by the curves and the lines 
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 and 
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is rotated about an axis parallel to the x-axis, write the integral with respect to x. If the axis of rotation is parallel to the y-axis, write the integral with respect to y.
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The second factor that can vary in this type of volume problem is whether or not the axis of rotation is part of the region that is being rotated. In the first case, each cross section that is generated will be a disk while in the second case, each cross section that is generated will be washer shaped. This creates two separate styles of problems:
The Disk Method: The disk method is used when the cross sections are disk shaped. The radius of a cross section is determined by a single function, 
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The area of the disk is given by the formula, 
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 The corresponding volume would then be 
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The figure to the right shows a typical cross-sectional disk.
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The Washer Method: The washer method is used when the cross sections are washer shaped. The radius of a cross section is determined by a two functions, 
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 This gives us two separate radii, an outer radius, from 
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 to the axis of rotation and an inner radius from 
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 to the axis of rotation. The area of the washer is given by the formula,  
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 The corresponding volume would then be 
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The figure to the left shows a typical cross-sectional washer.

   Exercises:    
1. Find the volume of the solid that is generated by revolving the region bounded by the curves 
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about the x-axis.

2. Find the volume of the solid that is generated by revolving the region bounded by the curves 
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about the y-axis.
3. Find the volume of the solid that is generated by revolving the region bounded by the curves 
[image: image617.wmf]x
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and 
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about t (a)  the x-axis and about  (b) the  y-axis.
4. Find the volume of the solid that is generated by revolving the region bounded by the curves 
[image: image619.wmf],
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about the x-axis.
5. Find the volume of a sphere of radius r.

6. Find the volume of a circular cone of radius r and height h.

7. The base of a solid is the region between the parabolas 
[image: image621.wmf]2
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 Find the volume of the solid given that the cross sections perpendicular to the x-axis are squares.
8.  Find the volume of a pyramid whose base is a square with sides of length L and whose height is h (see the figure below).
[image: image623.png]



Three and Two Dimensional Views of a Cross Section
9. For a sphere of radius r find the volume of the cap of height h (see the figures below).
[image: image624.png]



Three and Two Dimensional Views of a Cross Section
[image: image625.png]



Two Dimensional View of a Cross Section
10. Find the volume of the solid whose base is a disk of radius r and whose cross-sections are equilateral triangles (see the figures below).
[image: image626.png]



Three Dimensional Views of a Cross Section
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Two Dimensional Views of a Cross Section
The axes of two equal cylinders of radius 
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intersect perpendicularly. Find the volume common to the two cylinders.
Hint: First, the equations of the two cylinders are given by 
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  In the figure below you see one eighth of the total volume in the first quadrant with a typical cross sectional area shaded. In fact, the cross sections are squares. To see this,  from the figure we first note that the  height of the rectangle is 
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and the width is 
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From the equations, we then obtain
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Thus, our cross sections are squares.
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� Purcell writes � EMBED Equation.3  ���for� EMBED Equation.3  ���.


� The notation � EMBED Equation.3  ��� for the Riemann sum in this limit definition means that it does not matter what � EMBED Equation.3  ��� are chosen. We only require that � EMBED Equation.3  ���,  � EMBED Equation.3  ���





� If � EMBED Equation.3  ���is not continuous on � EMBED Equation.3  ��� the upper Darboux sum � EMBED Equation.3  ���where � EMBED Equation.3  ���See a previous handout on the real numbers, which discusses the least upper bound property.


� If � EMBED Equation.3  ���is not continuous on � EMBED Equation.3  ��� the lower  Darboux sum � EMBED Equation.3  ���where � EMBED Equation.3  ���See a previous handout on the real numbers, which discusses the greatest lower bound property.





� A function  f  is said to be piecewise continuous on � EMBED Equation.3  ��� if  f  is continuous on � EMBED Equation.3  ��� except, possibly, at a finite number of points.
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