

Departamento de Matemáticas Facultad de Ciencias Naturales

Recinto de Río Piedras

 $\mathop{\rm MATE}_{3024}$

Examen Final 21 de enero de 2011

	Nombre:			
				٦
No. de estu	diante:	Profesor:	Sección: _	
Instruc	ciones			
Las reglas p	para esta prueba son las siguient	tes:		
1. Esta j	prueba es de 2 horas.			
	prueba consiste de dos partes: u oblemas).	na de selección múltiple	(20 problemas) y otra de re	spuesta libre
3. Para	obtener crédito en los ejercicios	de respuesta libre, debe	mostrar todo su trabajo.	
4. NO S	E PERMITE EL USO DE CAL	CULADORAS.		
5. NO S PUEI	E PERMITE EL USO DE APA DAN INTERRUMPIR A SUS C	RATOS ELECTRÓNICO COMPAÑEROS	OS (CELULARES, IPODS,	ETC.) QUE
Como p	rueba de que usted ha leído y e	ntendido las instruccione	s, favor de firmar en la caja	ı de abajo.
	Firma:			

Página	Puntos posibles	Puntuación obtenida
2	21	
3	24	
4	15	
5	20	
6	30	
Total:	110	

Parte I. Selección Múltiple

1. (3 puntos) Realice las operaciones indicadas y simplifique el resultado. Deje su contestación en forma $\frac{x^2 + 8x + 15}{x^2 + 12x + 35} \cdot \frac{x^2 + 7x}{x^2 + 7x + 12}.$ factorizada.

$$A. \ \frac{x^2 + 7x}{x + 4}$$

B.
$$\frac{x}{x+4}$$

C. $\frac{1}{x+4}$ D. $\frac{x}{x^2+12x+35}$

 $y = -4 \operatorname{sen} (8\pi x + 4).$ 2. (3 puntos) Encuentre el período fundamental de

A. 8π

C. $\frac{1}{4}$

B.
$$\frac{\pi}{4}$$

3. (3 puntos) Encuentre el valor exacto de tan (345°).

A. $-2 - \sqrt{3}$

C. $2 + \sqrt{3}$

B.
$$\frac{2-\sqrt{3}}{4}$$

D. $\frac{2+\sqrt{3}}{4}$

4. (3 puntos) Cambie grados a radianes

A. $-\frac{8\pi}{3}$

C. $-\frac{9\pi}{4}$

B.
$$-\frac{3\pi}{8}$$

D. $-\frac{7\pi}{2}$

5. (3 puntos) Dado el número real t, sea $P(t) = \left(-\frac{\sqrt{21}}{5}, \frac{2}{5}\right)$ el punto en el círculo unitario que le corresponde a t. Encuentre $\cot(t)$.

A. $\frac{2}{5}$

C. $-\frac{\sqrt{21}}{2}$

B.
$$\frac{\sqrt{21}}{5}$$

D. $-\frac{5}{2}$

6. (3 puntos) Dado que sen $(\theta) = 0.8$, entonces el valor exacto de sen $(\theta) + \text{sen}(\theta + 2\pi) + \text{sen}(\theta + 4\pi)$ es:

A. 2.4

C. 4.4

B. 0.8

D. $2.4 + 6\pi$

7. (3 puntos) Indique el cuadrante de θ , si $\csc(\theta) > 0$, $\sec(\theta) > 0$.

A. I

C. III

B. II

D. IV

8. (3 puntos) Encuentre el valor exacto de: $\log_{10}(1000)$.

A. -3

C. 30

B. 3

D. $\frac{1}{1000}$

9. (3 puntos) Resuelva, sobre los reales \mathbb{R} , la ecuación $\log(3x) = \log(4) + \log(x-1)$.

A. $\{\frac{3}{2}\}$

C. $\left\{-\frac{4}{7}\right\}$

B. {4}

D. {-4}

10. (3 puntos) Factorice completamente $6x^2-26x-20$. Si no factoriza indique que el polinomio es primo.

A. 2(3x-2)(x+5)

C. 2(3x+2)(x-5)

B. (6x+4)(x-5)

D. primo

11. (3 puntos) ¿Cuál de los siguientes polinomios P(x), con coeficientes reales todos, tiene grado 4 y ceros -1, 2, 1-2i?

A. $P(x) = x^4 - 3x^3 + 5x^2 - x - 10$

C. $P(x) = x^4 - 3x^3 - 3x^2 + 7x + 6$

B. $P(x) = x^4 - x^3 + x^2 + 9x - 10$

D. $P(x) = x^4 - x^3 + 3x^2 - 5x - 10$

12. (3 puntos) Utilice el teorema del residuo para encontrar el residuo al dividir $5x^6 - 3x^3 + 8$ por x + 1.

A. 16

C. 10

B. 6

D. 8

13. (3 puntos) Haga una lista de los potenciales ceros racionales del polinomio $Q(x) = x^5 - 6x^2 + 4x + 10$. No encuentre los ceros.

A. $\pm 1, \pm 5, \pm 2$

C. $\pm 1, \pm 5, \pm 2, \pm 10$

B. $\pm 1, \pm \frac{1}{5}, \pm \frac{1}{2}, \pm \frac{1}{10}$

D. $\pm 1, \pm \frac{1}{5}, \pm \frac{1}{2}, \pm \frac{1}{10}, \pm 5, \pm 2, \pm 10$

14. (3 puntos) Utilice las fórmulas de medio ángulo para encontrar el valor de $\cos\left(\frac{5\pi}{12}\right)$

 $A. \frac{\sqrt{2+\sqrt{3}}}{2}$

C. $-\frac{\sqrt{2-\sqrt{3}}}{2}$

B. $-\frac{\sqrt{2+\sqrt{3}}}{2}$

D. $\frac{\sqrt{2-\sqrt{3}}}{2}$

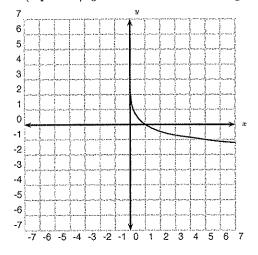
15. (3 puntos) Encuentre el valor exacto de $sen(sen^{-1}(8))$.

A. 1

C. 8

B. -8

D. no está definido


- 16. (3 puntos) Encuentre el valor exacto de $\sec\left(\tan^{-1}\left(\frac{\sqrt{3}}{3}\right)\right)$.
 - A. $\sqrt{3}$
 - B. $\frac{2\sqrt{3}}{3}$

- D. $\frac{1}{2}$
- 17. (3 puntos) Dada la función $y=-\frac{1}{2}\cos(2x-2\pi)$, encuentre (i) la amplitud, (ii) el período fundamental, (iii) el cambio en fase.
 - A. (i) $\frac{1}{2}$ (ii) π (iii) π B. (i) $\frac{1}{2}$ (ii) π (iii) $\frac{\pi}{2}$

- C. (i) 2 (ii) π (iii) π D. (i) 2 (ii) 2π (iii) 2 (iii) 2π
- 18. (3 puntos) Dado que $\sec(\theta) = \frac{9}{8}$ y que θ está en el cuadrante IV. Encuentre $\tan(\theta)$.
 - A. $-\frac{9}{8}$
 - B. $-\frac{\sqrt{17}}{\alpha}$

- C. $-\sqrt{17}$
- D. $-\frac{\sqrt{17}}{8}$
- 19. (3 puntos) Si $f(\theta) = \cos(\theta)$ y $f(a) = \frac{1}{5}$, encuentre el valor exacto de f(-a).
 - A. $-\frac{4}{5}$

- D. $-\frac{1}{5}$
- 20. (3 puntos) ¿Cuál de las funciones logarítmicas de abajo tiene la gráfica como en la figura?

- A. $\log_5(x)$
- B. $\log_5(-x)$

- C. $1 \log_5(x)$
- D. $-\log_5(x)$

Parte II. Respuesta Libre

21. (10 puntos) Encuentre las partes restantes del triángulo $\triangle ABC$, si a=3, b=6 y $c=3\sqrt{3}$.

 $\alpha =$

 $\beta =$ _____

 $\gamma =$

22. (10 puntos) Encuentre las partes indicadas del triángulo $\triangle ABC$, si b=10, c=15 y $\alpha=60^{\circ}$.

a =

23. (10 puntos) Un guardabosques que está a 102 pies de la base de un árbol gigante observa que el ángulo de elevación entre el suelo y el tope del árbol es de 60°. Encuentre la altura del árbol.

24. (10 puntos) Verifique la identidad $\cos(4\alpha) = 2\cos^2(2\alpha) - 1$.

25. (10 puntos) Verifique la identidad $\frac{1}{2} \left[\cos(\alpha - \beta) - \cos(\alpha + \beta) \right] = \sin(\alpha) \sin(\beta).$