Universidad de Puerto Rico Departamento de Matemáticas MATE 3018 – Exam I– September 16, 2008

(1) Let $p: 5-11=-6; q: 5 \neq \frac{15}{3}; r: 7 \leq 10$ and $s: 3\cdot 4=-5$. Decide if the following propositions are true or false.

No. Estudiante: ______ Profesor: Warma Sección OU1

Apellidos: _

(a) (1 Pts) $p \vee q$:

_____Nombre

(b) (1 Pts) $p \to q$:			
(0	(c) (1 Pts) $r \to p$:		
(6	(d) (1 Pts) $p \wedge q'$:		
(e) $(2 \ \mathbf{Pts}) \ [q \land (r \rightarrow p)] \rightarrow s'$:			
(2) (16 Pts) Consider the open sentences $p \equiv -7x + 1 \ge 21 + 3x$ and $q \equiv -9 + 5x > 2(9 - 2x)$. Find the solution set over \mathbb{R} for each of			
	(a) $CS_p =$	(e) $CS_{p'}=$	
	(b) $CS_q =$	(f) $CS_{q'} =$	
	(c) $CS_{p\vee q} =$	$g)CS_{(p\vee q)'} =$	
	$(d)CS_{(p\wedge q)} =$	(h) $CS_{(p \wedge q)'} =$	

1

- (3) (8 Pts) Let $A = \{x \in \mathbb{R} : x > 9 \text{ or } x < -15\}$ and $B = \{x \in \mathbb{R} : -6 \le x \le 7\}$. Find:
 - (a) $A \cap B =$
 - (b) $A \cup B =$
 - (c) $(A \cap B)' =$
 - (d) $(A \cup B)' =$
- (4) (10 Pts) Find the solution set over \mathbb{R} .
 - (a) $|5x 16| \ge 8$
 - (b) $|-11x+5| \le 16$
 - (c) 2 < |x| < 7
 - (d) $\frac{3-2x}{3x+5} \le -1$
 - (e) $\frac{2x-3}{x^2-3x+2} \ge 0$

- (5) (a) (2 Pts) The negation of $\{x \in \mathbb{R} : x \le -10 \text{ or } x > -3\}$ is :
 - (b) (2 Pts) The negation of $\{x \in \mathbb{R} : -3 \le x < 10\}$ is :
- (6) (2 Pts) State the **negation** of the following sentence: For all $\varepsilon > 0$, there exists $\delta > 0$ such that if $0 < |x c| < \delta$, then $|f(x) L| < \varepsilon$.
- (7) (4 Pts) State the contrapositive of each conditional sentence.
 - (a) If ab = ac and $a \neq 0$, then b = c.
 - (b) If $x^2 4 = 0$, then x = 2 or x = -2.
- (8) (10 Pts) Find an equation for the line with the given properties.
 - (a) Parallel to the line 6x + 3y = 7, containing the point (-1, 2).
 - (b) Perpendicular to the line y + 2x = 2, containing the point (-3, 0).
 - (c) Slope=-2 and y-Intercept=-2.
 - (d) Vertical line and containing the point (4, -5).
 - (e) x-Intercept=-4 and y-Intercept=4.

- (9) (6 Pts) Let $a, b \in \mathbb{R}$ with $a \neq 0$ and consider the points A = (0, 0), B = (a, b) and C = (13a, 13b).
 - (a) Show that A, B and C are collinear.
 - (b) Show that B is between A and C.
- (10) (4 Pts) If the midpoint M of the line segment AB is M=(4,7) and B=(-5,-10), find the coordinates of A.

(11) (6 Pts) Find the lengths of the medians of the triangle with vertices at A = (0,0), B = (10,0), and C = (8,8).

(12) (6 Pts) Find the center and the radius of the circle given by the equation $x^2 + y^2 - 4x + 6y + 4 = 0$.

(13) (6 Pts) Find an equation of the tangent line to the circle $(x-2)^2 + (y+3)^2 = 13$ at the point (4,0).

(14) Find the equation of each parabola.

(a) (4 Pts) Vertex at (0,0) and Focus at (-4,0).

(b) (4 Pts) Focus at (2,4) and the directrix is the line x=-4:

- (15) Consider the parabola given by the equation $x^2 + 6x 4y + 1 = 0$.
 - (a) (3 Pts) Write $x^2 + 6x 4y + 1 = 0$ in the form $y k = \frac{1}{4c}(x h)^2$.

- (b) (1 Pts) Find the coordinates of the vertex:
- (c) (1 Pts) Find the coordinates of the focus:
- (d) (1 Pts) Find the axis of symmetry:
- (e) (1 Pts) Find the equation of the directrix:
- (f) (1 Pts) Find the y-intercepts:
- (g) (1 \mathbf{Pts}) Find the x-intercepts:
- (h) (3 Pts) Sketch the graph of the parabola:

(16) (12 Pts) Find the equation of the circle that contains the point A = (0,0), B = (2,4) and C = (3,3).