Universidad de Puerto Rico Departamento de Matemáticas MATE 3018 – Exam III– November 28, 2007

Apellidos:	Nombre	
No. Estudiante:	Profesor: Warma	Sección OU1

(1) (8 Pts) Write each expression in the form a + bi.

(a)
$$(3+4i)(1-2i)^2 =$$

(b)
$$i^{17}(i^{22} - 1) =$$

(c)
$$\frac{2+3i}{4-i} =$$

(d)
$$\frac{4+i}{i} =$$

(2) (6 Pts) Use synthetic division to divide $P(x) = x^3 - 7x^2 + 5x + 3$ by D(x) = x + 1.

(3) (6 Pts) Find a polynomial equation of lowest degree that has 1+i and -1+i as roots.

(4) (6 Pts) Given that $i\sqrt{3}$ is a zero of $P(x) = x^3 - 4x^2 + 3x - 12$, find the other roots of P(x) = 0.

- (5) Consider the polynomial $P(x) = x^4 3x^3 5x^2 + 13x + 6$.
 - (a) (4 Pts) Find all possible rational roots of the equation P(x) = 0.
 - (b) (4 Pts) Find a rational root of the equation P(x) = 0.

(6) (6 Pts) Let $P(x) = 3x^4 + 5x^3 + 25x^2 + 45x - 18$. Verify that P(3i) = 0 and find all roots of P(x) = 0.

(7) (4 Pts) Determine the constant k so that x + 2 is a factor of $2x^3 + 3x^2 + kx + k + 1$.

(8) (12 Pts) Given that $\sin(t) = -\frac{12}{13}$ and $\frac{3\pi}{2} < t < 2\pi$, find the following.

(a) $\cos(t) =$	(e) $\csc(t) =$
(b) $tan(t) =$	$(f) \sin(2t) =$
$(c) \cos(\frac{t}{2}) =$	$(g) \sin(\frac{t}{2}) =$
$(d) \cos(2t) =$	$(h) \cot(t) =$

(9) (6 Pts) Find the exact value of:

$(a) \sin(-\frac{7\pi}{4}) =$	$(c) \cos(\frac{123\pi}{4}) =$
$(b) \sin(-\frac{11\pi}{4}) =$	$(d) \cos(-\frac{12\pi}{4}) =$

(10) (9 Pts) An angle α is placed in the standard position. Its terminal side passes through the point P = (-1, 2). Find:

(a) $\sin(\alpha) =$	$(d) \tan(\alpha) =$
(b) $\cos(\alpha) =$	(e) $\csc(\alpha) =$
$(c) \sec(\alpha) =$	$(f) \cot(\alpha) =$

- (11) (6 Pts) Solve the following equations for $0 \le x < 2\pi$.
 - (a) $\sin(2x) = \sin(x)$

(b) $2\cos(x) = \sec(x)$

(12) (4 **Pts**) Evaluate.

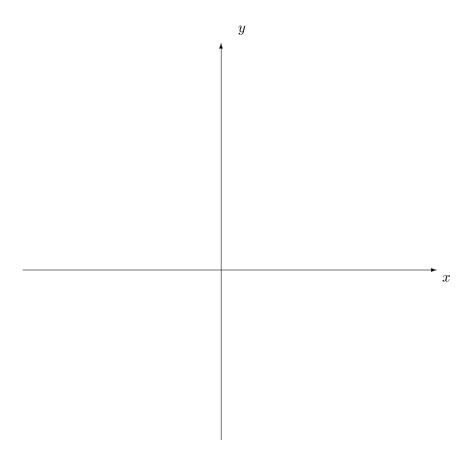
(a)
$$Cos^{-1}\left(-\frac{\sqrt{2}}{2}\right) =$$

(b)
$$\operatorname{Sin}^{-1}\left(-\frac{\sqrt{3}}{2}\right) =$$

(13) (4 Pts) Express without using trigonometric or inverse trigonometric functions.

(a)
$$\sin\left(\cos^{-1}(x)\right) =$$

(b)
$$\sin(2\sin^{-1}(x)) =$$


(14) (**4 Pts**) Simplify

(a)
$$\frac{\csc(x)}{\sin(x)} - \frac{\cot(x)}{\tan(x)} =$$

(b)
$$\frac{\sec^2(x) - 1}{\sec^2(x)} =$$

- (15) Consider the function $f(x) = 2\sin(3x + \pi) + 1$.
 - (a) (2 Pts) Find the amplitude:
 - (b) (2 Pts) Find the period:
 - (c) (2 Pts) Find the phase shift:
 - (d) (2 Pts) Determine the starting point of one cycle of the graph:
 - (e) (2 Pts) Determine the ending point of one cycle of the graph:
 - (f) (5 Pts) Find the five key points to the graph of $y = 2\sin(3x + \pi)$

(g) (6 Pts) Graph one cycle of $y=2\sin(3x+\pi)$ and $y=2\sin(3x+\pi)+1$.

