University of Puerto Rico, Río Piedras College of Natural Sciences Department of Mathematics San Juan, Puerto Rico

MODERN ALGEBRA QUALIFYING EXAM

- 1. This test is divided in two (2) parts: *Group Theory* and *Ring Theory*. Each part consists of four (4) problems. The test has a total of eight (8) problems; each worth 10 points. The three best solutions of each part will be chosen.
- 2. Turn off the cell phone and any other electronic device.
- 3. Show your work. To get credit, your answers must be well-written, wellorganized, and properly justified.
- 4. **MS students:** To pass, you should get at least ten (10) points in each part <u>AND</u> thirty (30) points overall.
- 5. **PHD students:** To pass, you should get at least fifteen (15) points in each part <u>AND</u> forty (40) points overall.
- 6. This is a 3 hours exam.

PART I: Group Theory

1. Prove that every group of order $20449 = 11^2 \cdot 13^2$ is an abelian group.

Hint: Use Sylow Theorems.

- 2. If φ is an automorphism of \mathbb{Z}_n , show that φ is multiplication by m for some m relatively prime to n. Conclude that $\operatorname{Aut}(\mathbb{Z}_n) \simeq U_n$ (U_n is the group of units modulo n).
- 3. Let Z(G) be the center of a group G. Show that if G/Z(G) is a cyclic group, then G is abelian.
- 4. Let P be a p-group acting on a finite non-empty set X. Let

$$X^P = \{ x \in X \mid g \cdot x = x \text{ for all } g \in P \}.$$

Prove that $|X^P| \equiv |X| \mod p$.

PART II: Ring Theory

5. For an integral domain R, let R[x] be the polynomial ring over R in the variable x. For $r \in R$, let $\phi_r : R[x] \to R$ be the evaluation homomorphism defined by $\phi_r(f(x)) = f(r)$

- (a) Prove that if I is a proper ideal of $\mathbb{C}[x]$, then there exists $r \in \mathbb{C}$ with $\phi_r(I) \neq \mathbb{C}$.
- (b) Let I be the ideal of $\mathbb{Z}[x]$ generated by 3 and $x^2 + 1$. Prove that I is a proper ideal of $\mathbb{Z}[x]$, and that $\phi_r(I) = \mathbb{Z}$ for every $r \in \mathbb{Z}$.
- 6. Find the degree of the splitting field E of $x^6 3$ over the following fields:
 - (a) $\mathbb{Q}(\sqrt{3})$
 - (b) \mathbb{F}_7 , the field with 7 elements.
 - (c) \mathbb{F}_5 , the field with 5 elements.
- 7. Let R be a ring with unit 1. Suppose that the order of R is $|R| = p^2$ for some prime number p. Then prove that R is a commutative ring.

Hint: Consider the set $Z = \{z \in R \mid zr = rz \text{ for any } r \in R\}$. Show that Z is a subgroup of the additive group structure of R.

8. Let $\mathbb{Z}[x]$ be the ring of polynomials in x with integer coefficients and $(x^2 + 1, x - 2)$ the ideal generated by the indicated polynomials. Prove that

$$\mathbb{Z}[x]/(x^2+1,x-2)$$

is the field with five elements.