PH.D ALGEBRA QUALIFYING EXAM

- 1. This test is divided in two (2) parts: *Group Theory* and *Ring Theory*. Each part consists of four (4) problems. The test has a total of eight (8) problems.
- 2. Turn off the cell phone and any other electronic decive.
- 3. Show your work. To get credit, your answers must be well-written, well-organized, and properly justified.
- 4. **PHD students:** to pass, you should get at least fifteen (15) points in each part <u>AND</u> forty (40) points overall.
- 5. **MS students:** to pass, you should get at least ten (10) points in each part <u>AND</u> thirty (30) points overall.
- 6. This is a three (3) hour test.

PART I: Group Theory

- 1. Let A be a finite abelian group. Let n be the order of A and let m be the exponent of A (i.e., m is the least positive integer such that $a^m = e$ for all $a \in A$).
 - (a) Show that m|n (i.e., m is a factor of n). (4 pts)
 - (b) Show that A is cyclic if and only if m = n. (6 pts)
- 2. Let G be a group of order 351. Then G has a normal Sylow p-subgroup for some prime p dividing 351. (10 pts)
- 3. A group G has exactly three subgroups if and only if it is cyclic of order p^2 for (10 pts) some prime p.
- 4. Do the following:
 - (a) Prove or disprove: If $H \triangleleft G$ is a normal subgroup of G and G/H is cyclic, then G is an abelian group. (5 pts)
 - (b) Prove that A_4 cannot have a normal subgroup of order 6. (5 pts)

PART II: Ring Theory

- 1. Consider the ring $R = \mathbb{Z}[x]$. Do the following:
 - (a) Show that R is NOT a principal ideal domain (PID). (6 pts)
 - (b) Show that if I is a maximal ideal of R, then I contains a $p \in \mathbb{Z}$ such that p is (4 pts) prime.
- 2. Do the following
 - (a) Determine whether $x^4 + 1$ is irreducible or reducible over \mathbb{F}_5 , where \mathbb{F}_5 is the finite field of 5 elements. (5 pts)

- (b) Prove that the finite fields $\mathbb{F}_5[x]/I$ and $\mathbb{F}_5[x]/J$ are isomorphic, where $I = (x^3 + 3x^2 + x + 2)$ and $J = (x^3 + x + 1)$ are maximal ideals. (5 pts)
- 3. In a ring R we have $x^3 = x$ for all $x \in R$, then show that R is commutative.
- 4. Let \mathbb{Z}_n be the ring of integers modulo n. Do the following:
 - (a) Find explicitly all the ring homomorphisms from \mathbb{Z}_4 to \mathbb{Z}_{10} . (5 pts)
 - (b) Prove that \mathbb{Z}_m is a ring of principal ideals. (5 pts)