M. Reza Emamy-K

Dirección Department of Mathematics, University of Puerto Rico
Box 70377 San Juan, PR 00936-8377
Oficina NCN II C-116
Horas Awaiting data
Programa Actual MATE 6881 (0U1) MJ 1200-0220PM
MATE 4031 (0U1) MJ 0230-0350PM CN-354
Teléfono (787) 764-0000 88262
E-Mail moc.oohay@ebucnaujnas

Educación

PhD, University of California, Berkeley, 1981

Investigación

Geometrí­a Convexa y Discreta, Lógica Umbral, Optimización en Hipercubos

Publicaciones Representativas

  1. Emamy-K., M.R., Meléndez Ríos, G.A. (2024). On a Convex Geometric Connection to Threshold Logic . In: Hoffman, F., Holliday, S., Rosen, Z., Shahrokhi, F., Wierman, J. (eds) Combinatorics, Graph Theory and Computing. SEICCGTC 2021. Springer Proceedings in Mathematics & Statistics, vol 448. Springer, Cham. https://doi.org/10.1007/978-3-031-52969-6_9
  2. M. Reza Emamy-K., Bahman Kalantari, Tatiana Correa, The Edge-Vertex Inequality in a Planar Graph and a Bipartition for the Class of all Planar Graphs. , Pi Mu Epsilon Journal, Issue:15:8, Spring 2023, pages 485-491
  3. M. R. Emamy-K., and R. Arce-Nazario, On the Cut Number Problem for the 4 and 5 Cubes, Special Issue of Discrete Applied Math., vol. 303, Nov. 2021
  4. M. R. Emamy-K., R. Arce-Nazario, L. J. Uribe, The 5-cube Cut Number Problem: A Short Proof for a Basic Lemma., Congressus Numerantium, Volume 232 (2019), pp. 153-164.
  5. M. R. Emamy-K.,  "A Lower Bound Theorem for Polytope Pairs," JCT, Ser. A, vol 38, no 2 (1985), 187- 191. Math. Reviews (D. Barnette)86f:53012.
  6. M. R. Emamy-K.,  "On the Covering Cuts of the d-cube, dleq 5," Disc. Math., 68 (1998), 191-196.
  7. M. Reza Emamy-K.,   Geometry of cut-complexes and threshold logic,   J. Geom. 65 (1999), No. 1-2, 91-100.
  8. Reza Emamy (with M. Ziegler),  New Bounds Far Hypercube Slicing Numbers,   Discrete Mathematics and Theoretical Computer Science, DM-TCS (2001) 155-163.
  9. M. R. Emamy-K.,   A new elementary proof for an old theorem on convex sets, Congressus Numerantium 170 (2004), 107-112.

Premios y Becas

Additional Information