
Hurewicz theorem
In mathematics, the Hurewicz theorem is a basic result of algebraic topology, connecting homotopy theory
with homology theory via a map known as the Hurewicz homomorphism. The theorem is named after
Witold Hurewicz, and generalizes earlier results of Henri Poincaré.
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The Hurewicz theorems are a key link between homotopy groups and homology groups.

For any path-connected space X and positive integer n there exists a group homomorphism

called the Hurewicz homomorphism, from the n-th homotopy group to the n-th homology group (with
integer coefficients). It is given in the following way: choose a canonical generator , then a
homotopy class of maps  is taken to .

The Hurewicz theorem states cases in which the Hurewitz homomorphism is an isomorphism.

For , if X is -connected (that is:  for all i<n), then  for all
i<n, and the Hurewicz map  is an isomorphism.[1]: 366, Thm.4.32  This
implies, in particular, that the homological connectivity equals the homotopical connectivity
when the latter is at least 1. In addition, the Hurewicz map  is an
epimorphism in this case.[1]: 390, ? 

For , the Hurewicz homomorphism induces an isomorphism 
, between the abelianization of the first homotopy

group (the fundamental group) and the first homology group.
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For any pair of spaces  and integer  there exists a homomorphism

from relative homotopy groups to relative homology groups. The Relative Hurewicz Theorem states that if
both  and  are connected and the pair is -connected then  for  and 

 is obtained from  by factoring out the action of . This is proved in, for
example, Whitehead (1978) by induction, proving in turn the absolute version and the Homotopy Addition
Lemma.

This relative Hurewicz theorem is reformulated by Brown & Higgins (1981) as a statement about the
morphism

where  denotes the cone of . This statement is a special case of a homotopical excision theorem,
involving induced modules for  (crossed modules if ), which itself is deduced from a higher
homotopy van Kampen theorem for relative homotopy groups, whose proof requires development of
techniques of a cubical higher homotopy groupoid of a filtered space.

For any triad of spaces  (i.e., a space X and subspaces A, B) and integer  there exists a
homomorphism

from triad homotopy groups to triad homology groups. Note that

The Triadic Hurewicz Theorem states that if X, A, B, and  are connected, the pairs  and
 are -connected and -connected, respectively, and the triad  is 

-connected, then  for  and  is obtained from 
 by factoring out the action of  and the generalised Whitehead products. The

proof of this theorem uses a higher homotopy van Kampen type theorem for triadic homotopy groups,
which requires a notion of the fundamental -group of an n-cube of spaces.

The Hurewicz theorem for topological spaces can also be stated for n-connected simplicial sets satisfying
the Kan condition.[2]

Rational Hurewicz theorem:[3][4] Let X be a simply connected topological space with 
for . Then the Hurewicz map
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induces an isomorphism for  and a surjection for .
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