# Homotopía

En <u>topología</u>, y más precisamente en <u>topología algebraica</u>, dos aplicaciones <u>continuas</u> de un <u>espacio topológico</u> en otro se dicen **homótopas** (del <u>griego</u> *homos* = mismo y *topos* = lugar) si una de ellas puede "deformarse continuamente" en la otra.

## Índice

**Definición formal** 

Tipo homotópico

**Usos** 

Teorema fundamental del álgebra Grupo fundamental

Referencias

Bibliografía

**Enlaces externos** 



Los dos caminos en líneas punteadas que se muestran arriba son homótopos en relación a sus extremos. La animación muestra una posible homotopía entre ellos.

#### **Definición formal**

Dos aplicaciones <u>continuas</u>  $f, g: X \to Y$  se dicen homótopas si existe otra aplicación (continua también)  $H: X \times [0,1] \to Y$  tal que:

$$H(x,0) = f(x)$$

$$H(x,1) = g(x)$$

Un ejemplo importante son las diferentes clases (de homotopía) de mapeos del círculo a un espacio  $oldsymbol{X}$ 

$$S^1 o X$$

la estructura resultante es el importantísimo grupo fundamental.

■ Si dos aplicaciones f y g son homótopas, se escribe  $f \simeq g$ ; lo que significa esta relación es efectivamente una relación de equivalencia sobre el conjunto de aplicaciones continuas de X en Y, Las clases de equivalencia se denominan *clases de homotopía* de aplicaciones.  $\frac{1}{g}$ 

# Tipo homotópico

Se dice que dos espacios X, Y tienen el mismo **tipo de homotopía**, si existe un par de aplicaciones  $X \xrightarrow{f} Y$  y  $Y \xrightarrow{g} X$  tales que  $g \circ f$  y  $f \circ g$  son homótopas a  $Id_X$  y  $Id_Y$  respectivamente.

Suele ser utilizado el símbolo:  $f \simeq g$ , para indicar que los objetos f y g son **homótopos**.

Como ejemplos, una <u>1-esfera</u> y un <u>toro sólido</u> tienen el mismo tipo de homotopía. Un espacio topológico que tiene el mismo tipo de homotopía que un <u>conjunto unitario</u> se dice <u>contráctil</u>.

#### **Usos**

#### Teorema fundamental del álgebra

La homotopía es la fuente de muchas demostraciones. Un ejemplo famoso es el <u>Teorema fundamental del álgebra</u>, que indica que cualquier <u>polinomio</u> no constante con coeficientes complejos tiene al menos una raíz en  $\mathbb{C}^4$ .

Para demostrarlo, consideramos un polinomio unitario P que no tiene raíz en  $\mathbb C$  y probaremos que su grado n es cero. Para cada r real positivo , definimos el bucle  $\alpha_r$  mediante :

$$orall t \in [0,1] \quad lpha_r(t) = rac{P(r \exp(2\pi \mathrm{i} t))/P(r)}{|P(r \exp(2\pi \mathrm{i} t))/P(r)|}.$$

Por definición,  $\alpha_r$  es un bucle definido en el círculo. Si r es igual a 0, obtenemos el bucle constante igual a 1. Como la función que asocia  $\alpha_r$ ( t ) con r y t es continua, todos los bucles  $\alpha_r$  son homotópicos en un punto.

Sea  $(a_j)$  la secuencia de los coeficientes de P y  $\rho$  un número real mayor que 1 y que la suma  $\Sigma |a_j|$  de módulos de coeficientes de P . Si z es un complejo de módulo  $\rho$ ,

$$(1) \quad |z^n| = \rho^n > (|a_0| + \dots + |a_{n-1}|) \rho^{n-1} \geq |a_0 + a_1 z + \dots + a_{n-1} z^{n-1}|.$$

Definimos el polinomio  $\boldsymbol{P}_{s}$  y el bucle  $\boldsymbol{\beta}_{s}$  mediante:

$$P_s(z) = s(a_0 + a_1 z + \dots + a_{n-1} z^{n-1}) + z^n, \quad orall t \in [0,1] \quad eta_s(t) = rac{P_s(
ho \exp(2\pi \mathrm{i} t))/P_s(
ho)}{|P_s(
ho \exp(2\pi \mathrm{i} t))/P_s(
ho)|}.$$

Las desigualdades (1) muestran que si  $|s| \le 1$ , el polinomio  $P_s$  no admite una raíz de módulo  $\rho$  por lo que el bucle  $\beta_s$  está bien definido. El bucle  $\beta_0$  realiza n vueltas alrededor del origen, según el párrafo anterior. Dado que la función que asocia  $\beta_s(t)$  con s y t es continua, este bucle  $\beta_0$  es homotopico a  $\beta_1 = \alpha_p$ . Como este último es homotópico en un punto, es decir que hace 0 vueltas alrededor del origen, n es igual a 0.

### Grupo fundamental

Si X es un espacio topológico, podemos componer dos bucles de la misma base p (es decir, del mismo origen y del mismo final p)  $\alpha_1$  y  $\alpha_2$  construyendo un bucle que primero atraviese la trayectoria de  $\alpha_1$ , luego el de  $\alpha_2$ . Esta composición es compatible con la relación de equivalencia que es homotópica a. Cociente de esta relación de equivalencia, obtenemos una estructura de grupo denominada *grupo fundamental* o *grupo de Poincaré*. Esta noción se generaliza y permite definir una infinidad degrupos de homotopía.

Este grupo está en el origen de las manifestaciones. Uno de los más famosos es el del <u>Teorema del punto</u> <u>fijo de Brouwer</u> en la dimensión dos, que indica que cualquier mapa continuo del disco en sí mismo admite un punto fijo.

#### Referencias

- 1. Munkres: "Topología"
- 2. Lannes 2004, p. 8 ou (en) Allen Hatcher, Algebraic Topology, New York, CUP, 2001, 544 p. ISBN 978-0-521-79540-1.

### **Bibliografía**

- Weisstein, Eric W. «Homotopía» (http://mathworld.wolfram.com/Homotopy.html). En Weisstein, Eric W, ed. MathWorld (en inglés). Wolfram Research.
- Hazewinkel, Michiel, ed. (2001), <u>«Homotopía» (http://www.encyclopediaofmath.org/index.php?title=Homotopy&oldid=18180)</u>, <u>Encyclopaedia of Mathematics</u> (en inglés), Springer, ISBN 978-1556080104.

#### **Enlaces externos**

• m Wikiversidad alberga proyectos de aprendizaje sobre Homotopía.

Obtenido de «https://es.wikipedia.org/w/index.php?title=Homotopía&oldid=142908812»

Esta página se editó por última vez el 15 abr 2022 a las 01:05.

El texto está disponible bajo la Licencia Creative Commons Atribución Compartir Igual 3.0; pueden aplicarse cláusulas adicionales. Al usar este sitio, usted acepta nuestros términos de uso y nuestra política de privacidad. Wikipedia® es una marca registrada de la Fundación Wikimedia, Inc., una organización sin ánimo de lucro.