On the Approximate Controllability of Fractional Differential Equations

Ernes C. Aragonés Geney, Department of Mathematics, UPR-RP.

June 26, 2020

DISSERTATION DEPARTMENT OF MATHEMATICS

Abstract

We study the approximate and mean approximate controllability properties of fractional partial differential equations associated with the so-called Hilfer type time-fractional derivative and a non-negative selfadjoint operator A_B with a compact resolvent on $L^2(\Omega)$, where $\Omega \subset \mathbb{R}^N$ ($N \ge 1$) is a bounded open set. More precisely, we show that if $0 \le v \le 1$ and $0 < \mu \le 1$, then the system

$$\mathbb{D}_{t}^{\mu,\nu}u + A_{B}u = f\chi_{\omega} \text{ in } \Omega \times (0,T), \ (\mathbb{I}_{t}^{(1-\nu)(1-\mu)}u)(\cdot,0) = u_{0} \text{ in } \Omega,$$

is approximately controllable for any T > 0, $u_0 \in L^2(\Omega)$ and any non-empty open set $\omega \subset \Omega$. In addition, if the operator A_B has the unique continuation property, then the system is also mean approximately controllable. The operator A_B can be the realization in $L^2(\Omega)$ of a symmetric, non-negative uniformly elliptic second order operator with Dirichlet or Robin boundary conditions, or the realization in $L^2(\Omega)$ of the fractional Laplace operator $(-\Delta)^s$ (0 < s < 1) with the Dirichlet exterior condition, u = 0 in $\mathbb{R}^N \setminus \Omega$, or the nonlocal Robin exterior condition, $\mathcal{N}^s u + \beta u = 0$ in $\mathbb{R}^N \setminus \overline{\Omega}$.