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Outline

In this talk, we will report our recent study of the Helton-Howe
trace and the Connes-Chern character for Toeplitz operators on
weighted Bergman spaces. We will present a proof of the
Helton-Howe trace and its generalizations via the idea of
Toeplitz quantization.
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Outline

In this talk, we will report our recent study of the Helton-Howe
trace and the Connes-Chern character for Toeplitz operators on
weighted Bergman spaces. We will present a proof of the
Helton-Howe trace and its generalizations via the idea of
Toeplitz quantization.

Plan :
@ Toeplitz operators and the Helton-Howe trace formula
© The Connes-Chern character
© Toeplitz quantization and trace formulas

This talk is based on joint work with Yi Wang and Dechao
Zheng.
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Helton-Howe trace formula

Unit disk

Let D be the unit disk in the complex plane C.
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Unit disk

Let D be the unit disk in the complex plane C.

Let L?(D) be the Hilbert space of square integrable functions on
D with respect to the Lebesgue measure and L2 (D) be the
closed subspace of square integrable analytic functions.

Let P : L?(D) — L2(D) be the orthogonal projection onto
L2(D), and f be the continuous function on D.

Consider the Toeplitz operator Ty : L2(D) — LZ(D) by

Ty (&) :==P(fE)-

Proposition

The commutator
[Tf ) Tg]

is a compact operator on L2(ID).
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Helton-Howe trace formula

Extension and K-homology

Let K(L2(D)) be the algebra of compact operators on L2(D).
Let 7(D) be the unital C*-algebra generated by T, and
K(L2(D).

Let C(S') be the algebra of continuous functions on S! = D.
We have the following short exact sequence of C*-algebras,

0 — K(L2(D)) — T(D) — C(S*) — 0.

In the Brown-Douglas-Fillmore theory, the above extension
defines a K-homology class [T(D)] in K1(S1).

In K1(SY), [T(D)] = [ 4]-

=
gl
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Helton-Howe trace formula

A direct calculation shows that the commutator [T%,7T}] is a
trace class operator on L2(ID). And this property extends to all
f,g € C=(D).
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Helton-Howe trace formula

A direct calculation shows that the commutator [T, 7] is a
trace class operator on L2(ID). And this property extends to all
fyg € C=(D).

The commutator [T, T,] is a trace class operator.

Theorem (Helton-Howe)

For f,g € C>*(D),

1
tr ([Tf,Tg]) =5 /Ddf/\dg.
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Helton-Howe trace formula

A direct calculation shows that the commutator [T, 7] is a
trace class operator on L2(ID). And this property extends to all
fyg € C=(D).

The commutator [T, T,] is a trace class operator.

Theorem (Helton-Howe)

For f,g € C>*(D),

tr ([Tf,Tg]) = QI/Ddf/\dg.

T

This result is deeply connected to the Pincus function for a pair
of noncommuting selfadjoint operators.
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Weighted Bergman space

Consider the probability measure dA;(z) (¢t > —1) on D :

t+1
d(z) = %(1 ~22)tdady.
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t+1
d(z) = %(1 ~22)tdady.

Let L?*(D, \;) be the Hilbert space of square integrable functions
on D with respect to the measure d\; and L2 ;(ID) be the closed
subspace of square integrable analytic functions.
Let P®) : L2(D, \;) — L2 (D) be the orthogonal projection onto
L2 (D), and f be the continuous function on D.

Consider the Toeplitz operator T]Et) : L2 (D) — L2 (D) by

1) = PO (f).
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Dependence on ¢
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Helton-Howe trace formula

Dependence on ¢

For f,g € C*(D), the commutator is [T}t),Tét)] is a trace class
operator.

Question

How does tr([T}t), Tg(t)]) change with respect to ¢ 7

If we evaluate the trace on Ki(C(S')),

([T, 7. 1) = —n.

eint - o—ind

The question is about the rigidity property at the level of
cocycle/cochain instead of “cohomology”.

8/ 28



Helton-Howe trace formula

Unit ball

Let B,, be the unit ball in the complex space C™.

9/28



Helton-Howe trace formula

Unit ball

Let B,, be the unit ball in the complex space C™.
Let dm(z) be the Lebesgue measure on B,,. For t > —1,
consider the probability measure dA; on B,, of the form

(n—1)!

d\(z) = ———
t(2) 7" B(n,t+ 1)

(1= |2 dm(z),

where B(n,t+ 1) is the Beta function.

9/28



Helton-Howe trace formula

Unit ball

Let B,, be the unit ball in the complex space C™.
Let dm(z) be the Lebesgue measure on B,,. For t > —1,
consider the probability measure dA; on B,, of the form

(n—1)!

d\(z) = ———
t(2) 7" B(n,t+ 1)

(1= |2 dm(z),

where B(n,t+ 1) is the Beta function.
The weighted Bergman space L2 ;(By,) is the closed subspace of
L?(B,,, \;) of square integrable holomorphic functions on B,,.

9/28



Helton-Howe trace formula

Unit ball

Let B,, be the unit ball in the complex space C™.
Let dm(z) be the Lebesgue measure on B,,. For t > —1,
consider the probability measure dA; on B,, of the form

(n—1)!

d\(z) = ———
t(2) 7" B(n,t+ 1)

(1= |2 dm(z),

where B(n,t+ 1) is the Beta function.

The weighted Bergman space L2 ;(By,) is the closed subspace of
L?(B,,, \;) of square integrable holomorphic functions on B,,.
Let P®) be the orthogonal projection from L?(B,, ;) onto

L2,(B,,). For f € C(B,), define T\" : L2 ,(B,) — L2 ,(B,) by
T(6) = PO (f).

9/28
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p>n.
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The commutator [T}t),T ét) | is a Schatten-p class operator for

p>n.

Helton and Howe considered the full antisymmetrization
T, T = > sen(nTy) T T

fon f-r(l) fT(Q). ’ f7(2n)'
TES2n

Theorem (Helton-Howe)

The full antisymmetrization [T]E?), ...,T;Si] s a trace class
operator, and

©0) O _ "
tr ([Tfl 9 ""Tf2n]) = (27[_1,)” /Bn dfi Adfo A--- Adfo.
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Connes-Chern character

Cyclic cohomology and Connes-Chern character

In the following article, Connes introduced a remarkable
generalization of the Helton-Howe trace using the
Connes-Chern character for p-summable Fredholm modules.
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Cyclic cohomology and Connes-Chern character

In the following article, Connes introduced a remarkable
generalization of the Helton-Howe trace using the
Connes-Chern character for p-summable Fredholm modules.

MR0823176, Connes, Alain, Noncommutative differential

geometry, Inst. Hautes Etudes Sci. Publ. Math. No. 62 (1985),
257-360.
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Connes-Chern character

Hochschild cohomology

Let A be an Fréchet algebra over C.
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Hochschild cohomology

Let A be an Fréchet algebra over C.
For € N, let
C’k(A) : = Hom¢ (A®(k+1), (C),

of all (continuous) (k + 1)-linear functionals on A.

Definition
Define the Hochschild codifferential 9: C*(A) — C¥*1(A) by

8<I>(a0 ®- & ak+1)
k
Z D(ag® - ®ajait1 Q@ Apt1)
=0
(

—1D)*®(ap100 ® a1 ® - @ ay,).
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Hochschild cohomology

Let A be an Fréchet algebra over C.
For € N, let
C’k(A) : = Hom¢ (A®(k+1), (C),

of all (continuous) (k + 1)-linear functionals on A.

Definition
Define the Hochschild codifferential 9: C*(A) — C¥*1(A) by

8<I>(a0 ®- & ak+1)
k
Z D(ag® - ®ajait1 Q@ Apt1)
=0
(

—1D)*®(ap100 ® a1 ® - @ ay,).

The Hochschild cohomology of A is the cohomology of the
cochain complex (C*(A), ).
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Connes-Chern character

Cyeclic cohomology

A Hochschild cochain ® € C¥(A) is cyclic if for all
ag,...,ar € A,

@(ak, ag, - . - ,ak,l) = (—1)k(I)(a0, ai, ... ,ak).
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Cyeclic cohomology

A Hochschild cochain ® € C¥(A) is cyclic if for all
ag,...,ar € A,

@(ak, ag, - . - ,ak,l) = (—1)k®(ag, ai, ... ,ak).

Let C¥(A) be the subspace of C*(A) consisting of cyclic
cochains. The cyclic cohomology HC*®(A) is defined to be the
cohomology of the cochain complex (C}(A),0).

Theorem (Connes-Hochschild-Kostant-Rosenberg)

HH*(C(M)) = DiRham(01), HP*(C(M)) = HEFhm (1),

Cyclic cohomology pairs naturally with K-theory of the algebra.
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The Connes-Chern character

For f,g € C*(B,), define

For p > n, define

7(fo, s fop—1) := tr (o¢(fo, f1) - - ot(fop—2, fop—1))
—tr (ot(f1, f2) - - - 0t (fap-1, fo))-

14 /28



Connes-Chern character

The Connes-Chern character

For f,g € C*(B,), define

For p > n, define

7(fo, s fop—1) := tr (o¢(fo, f1) - - ot(fop—2, fop—1))
—tr (ot(f1, f2) - - - 0t (fap-1, fo))-

Up to a constant ¢, 7 is the Connes-Chern character for the
Schatten-p extension,

0— 8, — &— C™(B,) — 0,

)(2)-

with ¢ = (=1)P~1(2im)P(p — 1) - (

\][eV]
N |—
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Connes-Chern character

Cyeclic cocycle

Theorem (Connes)

The functional 74 satisfies the following properties.

1) (f1, -, fop—1, fo) = —me(fo, f1,- -+, fop—1)
2) n(fofi, fas -+ s fop) — Te(fo, fifa, -+ 5 fop)+
+ 7e(fo, f1, fafz, +  fap) + - -+ + (fopfo, f1, -+, fop—1) = 0.

v

In general, Connes introduced cyclic cohomology as the
receptacle of the Connes-Chern character of a Fredholm module.
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Cyclic cocycle

Theorem (Connes)

The functional 74 satisfies the following properties.

1) (f1, -, fop—1, fo) = —me(fo, f1,- -+, fop—1)
2) n(fofi, fas -+ s fop) — Te(fo, fifa, -+ 5 fop)+
+ 7e(fo, f1, fafz, +  fap) + - -+ + (fopfo, f1, -+, fop—1) = 0.

v

In general, Connes introduced cyclic cohomology as the
receptacle of the Connes-Chern character of a Fredholm module.

The Helton-Howe trace tr ([T}?), ey T]E;)L]) defines a cyclic
cocycle on C>(§2n~1).
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Connes-Chern character

Our questions

In this project, we are interested in answering the following
questions.
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Our questions

In this project, we are interested in answering the following
questions.
@ Compute the explicit formula for the trace of the full
antisymmetrization [T}f), . Tgi] ie.

® 0
we(TF, ..., T )7

Does it depend on ¢ ?
© Recall

7(fo, +, fop—1) = tr (0¢(fo, f1) - ot fop—2, fop-1))
—tr (o¢(f1, f2) - - 0t (fop-1, f0))-

Compute the local expression of 7 by taking the limit
t — oo.
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Quantization and trace formula

The semicommutator

Recall that in the Connes-Chern character, the key ingredient is
the semicommutator o¢(f, g),

oi(f,9) = TJEt)Tg(t) — TJEZ).
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Quantization and trace formula

The semicommutator

Recall that in the Connes-Chern character, the key ingredient is
the semicommutator o¢(f, g),

oi(f,9) = TJEt)Tg(t) — TJE?.

The property of o4(f, g) as t varies is deeply connected to
quantization.

T : C(B,) - B(L2,(By)).

17 /28



Quantization and trace formula

Quantization

A symplectic manifold M is the phase space of a classical
mechanic system. The physical observables of this system are
functions on the symplectic manifold.
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Quantization

A symplectic manifold M is the phase space of a classical
mechanic system. The physical observables of this system are
functions on the symplectic manifold.

A quantum mechanic system is described by a Hilbert space H.
The physical observables are represented by self-adjoint
operators on the Hilbert space.

A “quantization map” relating a classical mechanic system to
its quantum version can be described by a linear map

Q" : C®°(M) — B(Hp).

The quantization Q" is related to the original symplectic
manifold via the following property.

11QF, Qg — 1Q% s gy 1B(3,) = o(h).
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Quantization and trace formula

Asymptotic expansion

In quantization, the following asymptotic expansion formula has
been established.

k
(&) (¢ —jp(®) _ —k—1
1T T3 = 3 T gz ) = O, £ = o0,
§=0
where Cj is a bilinear differential operator on C*(B,,) and C; is
the “half” Poisson structure associated to the symplectic form

w, i.e.
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Quantization and trace formula

Expansion in Schatten-p norm I

For our study of the trace formula, we need to estimate
Schatten-p norm of the asymptotic expansion formula.
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Quantization and trace formula

Expansion in Schatten-p norm I

For our study of the trace formula, we need to estimate
Schatten-p norm of the asymptotic expansion formula.

Theorem (T-Wang-Zheng)

Suppose t > —1, k is a non-negative integer and
Vf,g € €5TY(B,). Then we have the decomposition

k
(t) (t)
Z C TCz £,9) + Rf,g,kJrl‘
1=0

For anyt > —1 and k > 0, the following hold.
(i) If n > 1 then R;t,)g,k—s—l € SP for any p > n.

(i) fn=1then RY .., €S
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Quantization and trace formula

Expansion in Schatten-p norm II

For t large enough, we have
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Quantization and trace formula

Expansion in Schatten-p norm II

For t large enough, we have
(a)

~, 4+ 1.
ar~pt

(b)

t —k—
IR ol St

(c) for any p > n,
t —k—142
HR}L,MIISP Skt P
(d) if n =1, then for any p > 1,

¢ k-1t
IR pillsr Spt * 15
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Quantization and trace formula

The case of unit disk

Let’s start with the 1-dim case. Using the previous expansion
formula, we can compute the trace of the semicommutator

oi(f,g) = T]Et)Tg(t) - TJEZ) on Lg,t(D)-
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Theorem (T-Wang-Zheng)

4 / pil 0= ()P AF(2) Ag(w)dm(z, w),
]D)Q

where py is a strictly positive function on (0,1).
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Quantization and trace formula

The case of unit disk

Let’s start with the 1-dim case. Using the previous expansion
formula, we can compute the trace of the semicommutator

oi(f,g) = T]Et)Tg(t) - TJEZ) on Lg,t(D)-

Theorem (T-Wang-Zheng)

4 / pi(lp- () P)A F(2) Ag(w)dm(z, w),
]D)Q

where py is a strictly positive function on (0,1).

Corollary

® (o) :1/
tr[T7, 757 e Ddf/\dg.

2/ 28



Quantization and trace formula

Large t-limit (the disk case)

We take the limit of ¢ — oo in the following equation.
Op _poy _ 1 5
tr (Tf T, ng) =5 /Daang

4 / pi(lp- () )A F(2) Ag(w)dm(z, w)
]D)Q
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Quantization and trace formula

Large t-limit (the disk case)

We take the limit of ¢ — oo in the following equation.

Bty _ 0y — L 5
tr(Tf T, ng)_m/Daang

4 / pi(lp- () )A F(2) Ag(w)dm(z, w)
]D)Q

o The above formula suggests that in general the
Connes-Chern character could depend on t.
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Quantization and trace formula

Large t-limit (the disk case)

We take the limit of ¢ — oo in the following equation.

Bty _ 0y — L 5
tr(Tf T, ng)_m/Daang

4 / pi(lp- () )A F(2) Ag(w)dm(z, w)
]D)Q

o The above formula suggests that in general the
Connes-Chern character could depend on t.

@ The above cochain is not a Hochschild cocycle, but contain
interesting information about the holomorphic/complex
structure.
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Quantization and trace formula

High dimensional case

On B, o4(f, g) is p summable for p > n.
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On B, o4(f, g) is p summable for p > n. Our estimate of

oi(f,g9) = T}t)T(t) — T}tg) = REf}L’l states

_1
loe(f; gl sner S 774
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High dimensional case

On B, o4(f, g) is p summable for p > n. Our estimate of

oi(f,g9) = T}t)T(t) — T}Z) = REf}L’l states

_1
loe(f; gl sner S 774

The Connes-Chern character for p = n + 1 satisfies

1Te(fo, s fop1)| St — 0, t — 0.
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Quantization and trace formula

High dimensional case

On B, o4(f, g) is p summable for p > n. Our estimate of

oi(f,g9) = T}t)T(t) — T}Z) = REf}L’l states

_1

lot(f, 9)llsntr S 774
The Connes-Chern character for p = n + 1 satisfies
1Te(fo, s fop1)| St — 0, t — 0.

This estimate suggests that we consider the case of p = n.
However,

oi(z1,21) - 0t(2n, Zn) — 01(Z1, 22)04(Z2, 23) - - - 0¢(Zn, 21)

is not a trace class operator.
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Quantization and trace formula

Leading term

For f,g € ¢*(B,,), define

"L of 0 0 0
Cu(f.0) = =il = 1B Y 552~ (Vg )
=1 J J’
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Quantization and trace formula

Leading term

Theorem (T-Wang-Zheng)

When t — oo, the limit of tr (Ut(fl,g1) .. ‘Ut(fn+17gn+1)) has
the following leading term

=1 (t)

bt <Tcl(f1791) Cl(fn+1,gn+1)>

/ C1(f1,91) - C1(fa+1, gn+1)(2)
(1 = |z)m+1

dm(z).
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Quantization and trace formula

Partial antisymmetrization

For f1,..., fn,91,-..,9n € L*°(By,) and t > —1, define the
following partial anti-symmetric sums.

26 /28



Quantization and trace formula

Partial antisymmetrization

For fi,..., fa,91,---,9n € L®(B,) and t > —1, define the
following partial anti-symmetric sums.

T, 70, ... 7)), Ti]edd
- Z Sgn(T)Ut(fT(l)agl) T Ut(fT(n)agn)a

TESY
(t) (t) t)1even
[y, 10, Ty T
= Z Sgn(T)Jt(flv gT(l)) S O—t(fnmgT(n))'
’TGSn
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Quantization and trace formula

Partial antisymmetrization

For fi,..., fa,91,---,9n € L®(B,) and t > —1, define the
following partial anti-symmetric sums.

T, 70, ... 7)), Ti]edd
- Z Sgn(T)Ut(fT(l)agl) T Ut(fT(n)agn)a

TESY
(t) (t) t)1even
[y, 10, Ty T
= Z Sgn(T)Jt(flv gT(l)) S O—t(fnmgT(n))'
’TGSn

Theorem (T-Wang-Zheng)

Suppose t > —1 and f1,91,- - -, fn,gn € €*(B,). Then both
[Tjgl)’Tégf)’ . T(t) (t )]odd and [T}f), ffg(l)7 . T(t) T(t)]even are
i the trace class
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Quantization and trace formula

Large t limit and the Helton-Howe trace

Theorem (T-Wang-Zheng)
For f17gl7 T 7fnvgn S %2(E);

Jim tr([T}”, T, ..., T, T{]0dd)
= lim tr([T(t),Tg(l), 305 7T}?7T£ﬁ)]even)

AOGL A ...NOfn AOgn.
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Quantization and trace formula

Large t limit and the Helton-Howe trace

Theorem (T-Wang-Zheng)
For f17gl7 T 7fnvgn S %2(K);

hm tr([T}t),Tg(l),... T} )T ggi)]Odd)

= hm tr([T(t) T( ) o ,T( ) T(t)]even)

Y7010 fn? " 9n

AOGL A ...NOfn AOgn.

Theorem (T-Wang-Zheng)
Suppose fi1, fa, ..., fon € €*(B,) and t > —1. Then

n!
(2mi)™

() p(®) ®) _
T T T =

/ dfi Adfa A... A dfon.
B
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Quantization and trace formula

Thank you for your attention !
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