

Departamento de Matemáticas

Facultad de Ciencias Naturales Recinto de Río Piedras MATE 3153

Apellidos:	Nombre:	
No. de estudiante:	Profesor:	
MATE 3152 Examen–III:	2 de marzo de 2004 # de sección:	

Para obtener crédito muestre todo su trabajo. Explique claramente su contestación.

1. Considere los vectores:

$$\begin{array}{rcl} \vec{a} & = & (3,1,-1) \\ \vec{b} & = & (9\lambda-24,-7,21\lambda) \\ \vec{c} & = & (-1,2,-3) \\ \vec{d} & = & (7,7\sqrt{2},7). \end{array}$$

(a) $(6 \ puntos)$ ¿Qué valor debe tener λ para que \vec{b} sea paralelo al vector \vec{a} ? Explique.

(b) (4 puntos) ¿Qué valor debe tener λ para que \vec{b} sea perpendicular al vector \vec{a} ? Explique.

(c) (6 puntos) ¿Qué valor debe tener λ para que $\|\vec{b}\|=25$? Explique.

(d) (4 puntos) Encuentre $\vec{a} \cdot \vec{c}$.

(e) (6 puntos) Encuentre $\operatorname{proy}_{\vec{c}}(\vec{a}).$

(f) (4 puntos) Encuentre $\vec{a} \times \vec{c}$.

(g) (6 puntos) Encuentre los ángulos direccionales de $\ \vec{d.}$

2. (6 puntos) Demuestre que

$$\left(\vec{a} + \vec{b}\right) \times \vec{c} = (\vec{a} \times \vec{c}) + \left(\vec{b} \times \vec{c}\right).$$

para todo $\vec{a}, \vec{b}, \vec{c}$.

3. (6 puntos) Suponga que $\vec{a} \neq \vec{0}$. Demuestre que si $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$ y $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, entonces $\vec{b} = \vec{c}$.

4. (6 puntos) Exprese $\left(4\vec{a}+6\vec{b}\right) \times \left(8\vec{a}+10\vec{b}\right)$ como un múltiplo escalar de $\vec{a} \times \vec{b}$.

5. (6 puntos) Encuentre la ecuación vectorial parametrizada $\vec{r}(t)$ de la recta que pasa a través del punto P(3, -4, 5) y que es paralela a la recta parametrizada por $\vec{R}(u) = (1+u, 3-u, 10u)$.

6. (6 puntos) Evalúe $\vec{f}'(t)$, si $\vec{f}(t)=(e^{t^2+3t},\ln(t^2+1),\cos(t))$.

7. (6 puntos) Evalúe $\int_0^\pi \vec{r}(t) \ dt, \text{ si } \vec{r}(t) = (\sin(t), \cos(t), t).$

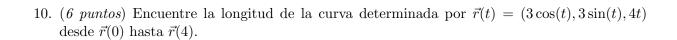
- 8. Sean $\vec{c} = (c_1, c_2, c_3)$ un vector constante y $\vec{f} : \mathbb{R}^3 \longrightarrow \mathbb{R}$ una función continua en [a, b].
 - (a) (6 puntos) Demuestre que $\vec{F}(t) = \int_a^t \left(\vec{c} \times \vec{f}(s) \right) ds$ y $\vec{G}(t) = \vec{c} \times \int_a^t \vec{f}(s) ds$ tienen la misma derivada.

(b) (2 puntos) Concluya que $\vec{F}(t) = \vec{G}(t)$ para todo $t \in [a,b]$. Explique.

- 9. Considere la curva parametrizada por $\vec{r}(t) = (\cos(3t), t, -\sin(3t)).$
 - (a) (6 puntos) Encuentre, para toda t, al vector tangente unitario $\vec{T}(t).$

(b) (6 puntos) Encuentre, para toda t, al vector normal principal $\vec{N}(t)$.

(c) (6 puntos) Encuentre la ecuación, en términos de x,y,z, del plano osculador en el punto en la curva cuando $t=\frac{\pi}{12}.$



11. (6 puntos) Encuentre el radio de curvatura de la curva $y=2\sin(2x)$ en el punto $(\frac{\pi}{4},2)$.