

Departamento de Matemáticas

 ${\rm MATE}\atop{\bf 3153}$

Facultad de Ciencias Naturales Recinto de Río Piedras

Apellidos:		Nombre:	
No. de estudiante:		Profesor:	
Cuarto Examen:	5 de diciembre de 2016	# de sección:	
o dar to Enament	<u>- </u>	// 40 500010111	

Para obtener crédito muestre todo su trabajo. Explique claramente su contestación.

1. (12 puntos) Evalúe la integral de línea de $\overrightarrow{h}(x,y)=\left\langle 2x+1,y^{2}\right\rangle$ sobre el segmento de recta que va desde (-1,2) hasta (4,10).

2. (10 puntos) Evalúe la integral $\int_C y^2 dx + (4xy - 6x^2) dy$, donde C es la curva parabólica $y^2 = 8x$ que va desde (0,0) hasta (2,4).

3. (12 puntos) Considere el campo vectorial $\overrightarrow{h}(x,y) = \langle 200x \operatorname{sen}(y) + ye^x, \ 100x^2 \cos(y) + e^x \rangle$. Primero, verifique que \overrightarrow{h} es un gradiente. Segundo, evalúe la integral de línea de \overrightarrow{h} sobre la curva

$$C: \overrightarrow{r}(u) = \langle \cos(u), u \rangle, \quad u \in [0, \pi].$$

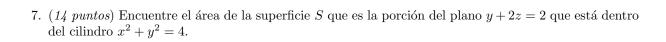
4. (10 puntos) Calcule el trabajo realizado por la fuerza $\overrightarrow{F} = \langle y - x^2, z - y^2, x - z^2 \rangle$ sobre la curva parametrizada por $\overrightarrow{r}(t) = \langle t, t^2, t^3 \rangle$, $t \in [0, 1]$, desde el punto (0, 0, 0) hasta el punto (1, 1, 1).

5. (12 puntos) Utilice el teorema de Green para evaluar $\int_C 2xy\ dx + (x+y)\ dy$ donde C es el borde de la región acotada por las gráficas de $y=0;\ y=4-x^2$.

6. (12 puntos) Se dice que un campo vectorial $\vec{F} = \langle F_1, F_2, F_3 \rangle$ es irrotacional si $\mathbf{rot}(\vec{F}) = \nabla \times \vec{F} = \vec{0}$. Encuentre constantes a, b, c de modo que

$$\vec{F} = \langle -4x - 3y + az, bx + 3y + 5z, 4x + cy + 3z \rangle$$

sea irrotacional.



8. (14 puntos) Determine el flujo del campo vectorial $\overrightarrow{v}(x,y,z)=\langle 0,xz,-xy\rangle$ a través de la superficie $S:\overrightarrow{r}(u,v)=\langle u,v,uv\rangle\,,\quad u\in[0,1]\quad v\in[0,2],$

en la dirección del vector normal unitario \overrightarrow{n} que apunta hacia afuera.

9. (14 puntos) Dado el campo vectorial $\overrightarrow{v}(x,y,z)=\left\langle 2z,x,y^{2}\right\rangle$ y la superficie S parametrizada por

$$S: \overrightarrow{r}(u,v) = \langle u, v, 4 - u^2 - v^2 \rangle, \quad (u,v) \in \Omega,$$

donde Ω es la región acotada por el círculo de radio 2, evalúe

$$\iint_S \left[(\nabla \times \overrightarrow{v}) \centerdot \overrightarrow{n} \right] \ d\sigma,$$

donde \overrightarrow{n} es el vector unitario normal a S que apunta hacia afuera, ya sea directamente o utilizando el teorema de Stokes.