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The concept of the limit is the most mportant concept in the Calculus. Bverything that we will do depends upon it.
This concept, historically, began with the work of Archimedes (287 BC — 212 BC) and was developed into the
Caleutus with the work of Sir Isaac Newton (1643-1727) and Gottfried Leibniz (1646-1716). Even though these
fwo mathematicisns were masters of intuition, their theory of the Calculus had many unjustifiable ideas. Finally, the
Caleulus was placed on a solid foundation with the work of such prominent mathematicians as Augustin Louis
Cauchy (1789-1857), Bernard Bolzano (1781-1848), Karl Weierstrass (1815-1897) and Richard Dedekind (1831~
1916). The Calculus that we will learn is actually due to Cauchy while the notation that we will vse is due to
Leibniz. One might say that it took over 150 years to Jogically elucidate the concept of the limit. So, if you find this
concept somewhat difficult to understand in the beginning it is quite natural. But with persistence and motivation
vou will grasp it. A young physicist once complained to John von Neumann, 2 giant of a mathematician of the
twentieth century, that he did not understand a certain mathematical method. “Young man”, responded von
Neumann, “in mathematics you don’t understand things. You just get used to them”.

We will approach our uaderstanding of the limit concept from two perspectives. We will begin by presenting an
intuitive discussion of the central theme of this concept. Afier this is absorbed, we will present the Hmit concept the
way mathematicians understand and work with it. This latter presentation will assume that you have a solid
understanding of certain concepts from the Pre-Calculus. Specifically, you should feel comfortable working with
inequalities and the absolute value; in particular, with the triangle inequality.

Intuitive Discussion of the Limit
In general, we ﬁiﬂ be concerned with analyzing the behavior of a function f near a point c.

The Left Hand Limit

We assume that we have a function f that is defined near ¢~ {teft side of ¢) but not necessarily at c'; that is, f{c)

may not be defined. Let us imagine the following scenario. Let us imagine that we are the variable x walking on the
x — axis approaching ¢ from the left. There are three rules we must follow: '

1. We begin approaching ¢ from the left (c“) throngh x’s where f is defined near ¢”.
2. Whenwestepona number x, we observe the beight f (x) .
3. We must never step on ¢ itself.

We then ask the following question: As x#¢ approaches ¢ from the left (x —c ), what number L, if any, do the

heights f{x} approach (f (x)—+ 7)? If L exists, we write lim f (x): L, read “The limit of f(x), as x
X+

approaches ¢ from the left, is L”. The number L is called the left-hand limit of / at c.

Asan example refer to Figure 1, in whichc =2 . Observe that L =35 here.
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In an analogous manner, we have

The Right Hand Limit

We assume that we have a fimction f that is defined near c* (right side of ¢} but ot necessatily at c; thatis, f{c)

may not be defined. Let us imagine the following scenario. Let us imagine that we are the variable xwalking on the
x — axis approaching ¢ from the right. There are three rules we must follow:

1. We begin approaching ¢ from the right (c*") thmugh x’s where f is defined near ¢*.
2. Whenwestepona number x, we observe the height f° (x) :
3. 'We must never step on ¢ itself.

We then ask the following question: As x#¢ approaches ¢ from the right (x ¢t ), what number R, if any, do the
heights f(x) approach (f(x)—> )2 If R exists, we write lim f (x)= R, read “The limit of [ (x), as x
; . Dol

approaches c from the right, s R The number R is called the right-hand limit of fate.
As an example refer to Figure 2, in which ¢ = 2 . Observe that R=3 here.

Refer to Figure 3 to see 2 numerical example that corresponds to the graphical examples in Figure 1 and Pigure 2.
In Figure 3, the steps are numbered frora 1toco. If the handed limits exist, they must be unigue, and it does not

matter what the actual values of xare when x—»¢” of x>,




The Right Hand Limit Hm f{x)=3
x-52%

g

2 4
Figure 2
Left Hand Limit Right Hand Limit
If xapproaches 2 from the left, then f(x)approaches Tf xapproaches 2 from the right, then
5 f (x) approaches 3

ot
x—52" = flx)=+3

or
lim f(x)=5
X427

or
x—=2" = f(x)-+3
or
tim flx)=3
x—+2*

x f (x) * f (x)

1 1.980 4.9204 297 2.7236
2 1.982 4.9283 2.89 2.7655
3 1.984 4.9363 2.80 2.8090
4 1.9%6 4.9442 2.72 : 2.8443
5 1.988 4.9521 2.63 2.8801
6 1.900 49601 2.55 7.9081
7 1.992 49681 246 2.9354
8 1.994 49760 238 2.9558
6 1.996 4.9840 2.29 2.9742
10 1.999 ... 4.9960 2.21 2.9864
11 1.9998 49992 2.12 2.9956
12 1.99999 49999 2.04 . 2.9995
13]  1.999999 499999 2.001 2.9999996
141 1.9999999 4.999999 2.0001 2.999999997
1 1 ) |

Lfo 97 5 a* 3

Figure 3
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T our examples, we intuitively found lim f (x):: 5 and iin;l F (x)zB.You may be asking yourself how do we
=2 x->2" ’ :

really know that L=5 ,R=3 and not, say, L =5.000001, R = 3.0000001. This point is well taken. We are only

intuitively trying to understand the Jimit concept. We will soon develop criteria which will guarantee what the
handed limits are, if they exist.

The Limit Itself

We assume that we have a function f that is defined near ¢ (on both sides of c) but not necessarily at ¢; that

is, f{c) may not be defined. If lim f° (x)m L=R=lim f (x), we write lim f (x}=L, read “The limitof f (x), as
A-¥C X—=C X

x approaches ¢ from either (both) side(s), is L. The number L is called the limit of f at c.

Refer to Figure 4 and Figure 5 to see an example in which Iirr; Fix)=4

The Limit lint f{x)=4

16 -2 =27

f(x)=<6 x=5
V8x—~67+7 x>5

L

+4 x<5

2 55" = flz}—s 4« Flxlest «

H 3 5 ’ 10
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Left Hand Limit Right Hand Limit

If xapproaches 5 from the left, then ' If xapproaches 5 from the right, “then
£(x)approaches 4 ) _ f(x)approaches 4
or or
x5 = f{x]—> 4 x> 5% = f{x) >4
or or
lim flx)=4 lim flx)=4
x F(x) X )
i 4.44 5.3859 5.16 4.0482
2 4.51 5.2430 5.15 4.0451
3 4.57 5.1139 5.14 4.0421
4 4.63 4.9787 5.13 4.0390
5 4.70 4.83130 512 _ 4.0360
6 4,76 4.6639 5.11 4.0330
7 4.82 4.5082 : 5.10 4.0299
8 4.89 4.3130 5.09 4.G269
9 4,91 4,2620 5.08 4.0239
10 4.93 4.2051 5.07 40209
i1 4.98 4.0596 5.04 40119
12 4.9% 4.0299 5.01 4.0030
13 4.999 4.0029 5.001 4.0002
14 4.9995 4.00025 5.0001 4.00002
is 4.59959 4.00003 5.00001 4.000002
7 7 ) ] 7
0 5~ 4 5* 4
Figure 5

Precise Definition of the Limit

We assume that we have a function f that is defined in a set of the form (c - p,c)u(c,c + p), or, for those
x's that satisfy 0 <|[x—c|<p, some p>0.Now,
lim f(x)z Lmeans, for x#c,

If xapproaches ¢, then [ (x) approaches L
or
x>e= flx)- L
or
lchlaf):"b‘f(x)——L]—%O

Tn the last implication, we are given that 0+ lx - cl —» 0 but how can we guarantee that | f (x)_ Ll —» 07 The answer
to this last point is the essence of the limit concept. So, we must try to understand what it could mean
f{)r\ ' (x)~ L‘ —» 0. Now, if l v (x)'« Ll — 0, we will understand this to mean that | f (x)-— Ll can be made as small as
we desire. How can we vexify that we can do this? We can do this by applying the following test:
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Let & (epsilon) be an arbitrary positive test mumber!. Then, our understanding that |/ ()~ L| can be made as small

s we desire becomes the requirement that ope can solve | Vi (x)—— L\ <& for x in the following sense:
We can produce a posz’tfﬁe number & (delta) no greater than p Y sp that every x ¢, with distance less
than 8 from c, satisfies the inequalig{] f (x)m L] <g.

In surrnary, EE f (x)m I means that given £ > 0 one can produce a positive number &, with 6 < p, that answers

the following:

O<lx~cj< | §=7 =|fx)-Li<e

Example 1: Prove I,in%(:%x + 2) =35, using & — 0.

Proof:
Set £ ~Lest:

Let &> 0. We must answer.

o<lx~1< 5=7 | =|Ex+2)-5<e

Determine P:

First, we ask

Within what distance p of ¢ should we begin our analysis of the behavior of f (x) for x near ¢?
For fimctions that are polynomials, we may take p =1. This means that our apalysis of the behavior of
f (x) for x near ) assumes that, initially, x will satisfy

1) o<px—1<p
Discover & &

Determine Relationship Between the Expressionsix - cl & | f (x) - L! :
Since 1): — 1‘ controls when ‘(Bx +2)- Sl < &, we want to determine how the expressions ix - 1\ and
{(Bx +2)— 5] are related. Here lx - 1| is a factor of \(33: +2)~ Sl. Namely,

) K3x+ 2)~-5|=3x~ 1 |

¥ {n the future, we will simply write “ £ > 07 tomean “ £ isan arbitrary positive test number”.
1 The namber & will always satisfy 0 <8 < p. '




Then use (2) To Extract & :

. We wan‘c\(Bx + 2)_ 5l < £ . From {2), it is sufficient {o require 3|x - 1} < g But 3|x - Il < E &> |x - 1{ < —;L This

sugoests that we take & = min p,f-» because we have two restrictions on [x — 1|, namely, 0<fx~1< p &
gg 3 v »

lx—ll <gf3.
Verify &:
Sinced = min[p, %),

= 3!3:—1‘ S 35:35::5,:
By @) Becausa.r-lix:& 3

(3) o<lx-1l< 5% = |3x+2)-9|
<%
Summarizing, using the underline parts of (3), we finally obtain, for & = mi.t{ p,—z—}, that

0<p-1|<d=|3x+2)-5l<e =

Example 2: Prove lim x* =4, using 5.

Proof:

Set ¢ -Test:
Let £ > 0 be our test aumber. We tmust answer.

0<‘x-~2[< d=1 :>le ~*4‘<5

Dreterming P

First, we ask

Within what distance p of ¢ should we begin our analysis of the hekavior of f (x) =x* for x near ¢?
For functions that are polynomials, we may take p=1. This means that our analysis of the behavior of
f{x)=x" for x near 2 assumes that, initially, x must satisfy

(1) o<x-2<p

Determine § ¢

Then, we ask
How are jx—2| and lxz - 4; related?
|~ =|x -2}z + 2
Then, we ask
How big can lx‘ become?
=|c-2)+ 20—+ < p+[d=3

Since 0<x-2j<p




Tn summary, we have
(2) Q<[xw2\<p:3[x\<3

Then, we ask
Heow big can the other factor \x + 2] become?

be+2) <o+ i Bf@)(p 4+ \2])+ 2= p+22|=5
In summary, we bave
@) o0<|p-2<p=p+2<S
Then, we ask
‘What does (3) imply about the size of lxl - 4‘ 1

2 Y -
0 <lx—2[< p :>lx —4{—]3: 2“3:—%2‘3&3)5@ 2]
In sumnmary,
@ 0<px—2<p=l? —4<sk-2
Then, we ask
Finally, what conditions are required on lx -cl to puarantee lxz - 4l <g?
Recall that we want e — 4[ < g . However, from (4), we see it ig sufficient to have

S — 2<e
But

(5) S‘x—~2l<s <::>]x—2\<-§—
From (4) and (5), we se¢ that we have two conditions that !x - 2] st satisfy. That is, we must have

6 0<{x—-2\<pand[x—2]<i;—

This suggests that we require ¢ < |x - 2] <&, where & = min( p,%) .

Verify 6 :
Show that & = min( p,f’;—) works.

&
M) 0<jx-2|<8h,z0<x~2<p = x? 4] <5 —2[Bem§¢_2id55 It

Susamarizing (7), we finally obtain, for & = min( p,%),

0<‘x~—2‘<5:>‘x2~4l<5 "




Example 3: Prove limx® = ¢*, using £ - 5.

AmpC
Froof:
Set & ~Fest:

Let £ > 0 be our test number. We must answer.

O<lg—c|< | §=2 :bixz mcz‘«:s

Determine P

First, we ask

Within what distance p of ¢ should we begin our analysis of the behavior of 1 {x)==x* for x near c?
For functions that are polynomials, we may take p=1. This means that our analysis of the behavior of
f{x)= x? for xnear ¢ assumes that, initially, x must satisfy

(1) O<lz~d<p.

Determine § 2

Then, we ask
How are |x—c| and ixz —c2$ related?

? —e|=fe~d| e+
Then, we ask
How big can |x{ become?

]xl = I(x - c) + cl = lx - c! + |c:l3im0:’.‘%4(1D pt |r:l
In suminary, we have
(2) G<|x—cl< p=r |x| <p+|c!
Then, we ask
How big can the other fzctor {;c + cl become?

lx+c‘£]x[+|c| < (p+|c‘)+lc|=p+2[cimfi

By (&)
In summary, we have
(3 0<[x—c|<px>‘x+cl <p+2|c{EA
Then, we ask

What does (3) inuply about the size of Ixz - czl ?
0 <‘x~—ci <p **_“:>ix2 Mczl =|ch|ix+c|3<(3)!x~—c]ﬁi
¥

In summary,
@ O<fr—d< pm[xz _c2l<lx—clfi

Then, we ask

Finally, what conditions ave required on |x —c| to guarantee Ix2 - czl <g?

~ Recall that we Want‘x2 - czl < & . However, from (4), we see it is sufficient io have
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Alx—cl<e
But
(5) Alchl<84:>{x—c\<—%

From (4) and (5), we see that we have two conditions that \x - c] mmust satisfy. That is, we raust bave

{6) 0<*x~—c\<pand1x-wct<%

This suggests that we require 0 < lxc|< 8, where & = min( p,%) )

Verify 8: _
Show that 6 = min(p,-%) works.

&
(7) OW__W_._M—«—-»'«< lx _Cl < 6 gMZO < tJC —»c{ < pﬁ%}lxz —Czl.é ‘X*—Cl{i B&cmme(f4x«ci<£&413yd§§oféz% = z

Summarizing, using the underlined parts of (7), we finally obtain an answer to the original question posed
above: We have, ford = min( P, —fﬂ, that

0<lx——c]<5:>\x2 —c"‘\<5‘ =

1 .
Example 4: Let f{x)=—.For c#0,Prove Iimf(x)=~—1~, using & — 8.
X X fid

Proof:
Set £ ~Test:

Let & >0 be our test number. We must answer

(1) O<fx—-d< | =2 | =

1 i-\
e e el L E
x £ ’

Determine P:

First, we ask

Within what distance p of ¢ should we begin our analysis of the behavior of f (x) near ¢?
Since x* 0, we may use any value of p that defines an interval about ¢ that does not include 0. For
convenience, we take p = [c‘ / 5 This means that our analysis of the behavior of f{x) near c assumes that,
intially, x must satisfy

@ O<p—d<p



i1

Tretermine & ¢

Then, we ask

L - —1— related?

How are |x— ¢| and
x ¢

3)

L oo fes el bod
x E{ | oxe | | xc | | xe lell =| ]lcuxl
Summarizing, using the underlined parts of (3}, we have
11 1
@ [t

Theﬁ', we ask
Eow small can lxi become?

© p=fe—o)rd 2|t~ 22

Summarizing, using the underlined parts of (5) we have

& O<fx- c‘<p:>‘xl H

Then, we ask

How big can the other factor ﬁﬂ in (3) become?
cllx

1 1 2

(7 @B%@;ﬂﬂ = E

Suminarizing, using the underlmed pa:’ts of (7), we have

i ll

8y O<lx- c[<p:>Hi

Then, we ask
What does (8) imply about the size of

1.4,
x e

1 1 1 2‘1: c!
Ll s <
x ey’ e aime |
Summarizing, using the underlined parts of (8), we have

(10) 0<lx—d i——— 2';\14

®)

(44

Then, we ask

Finally, what requirements must ix - c‘ satisfy to gnarantee

1 1
e < g7
x ¢

1 1 -
Recall that we want ]w—«$ < ¢ . However, from (10), we see it is sufficient to have 0 < Z‘X 5 c‘ < g . But
x c :

il
2

C

<£<:;>G<[x—cl<
¢l

. Thus, we need
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(1) O<lr—¢< H

Thus, from (10) and (1 l) we ses that we have two requiremsents that ‘x cl must satisfy. That is, we must have

O<[xmc|<pand0<ﬁx~cl<i|g|——."[‘his suggests that we require Q<‘x—cl<§,wh&re

Verify 6:

2
&
Show that & = um{ P MJ%LJ works.

= 0<|x—c[<p=

(13 0<!x c|<é'

_I__E! < 2 . 2.5 < _L

sele] / 2 x BYTW) lclz Becanse d<jx—c|<s ‘Clz By def of & lcl 2 £

Summarizing, using the underlined parts of (13), we finally obtain an answer to the original question posed in

11
—dcg A
=

(1): We have, for & = mu{p, H ] that

O<lx—d<=

~ Example 5: For ¢ > 0, Prove lim+/x = e, using £ 5.

=

Proof:
Set ¢ ~Fest:

Let & >0 be our test number. We must answer

O<fr—c|< | 6=7|=

V5 sz]@

Determine P

First, we ask
Within what d:stance p of ¢ should we begin our analysis of the bekavior of [ (x) =[x for x near e?
Since we must have x > 0, we may choose any deleted interval about ¢, in which x > 0. Thus, we may take
[

p= 5= E This means that our analysis of the behavior of f (x) = «lr; for x near ¢ assumes that, initially, x

must satisfy
() 0« ‘x—-cl < p.




Dietermine & ¢

Then, we ask
How are lx cl and ‘f \/;] related?

po—cf = - ﬂl\/—‘{'\[.l

[ = e = l@+ﬂlx~ci el pled

Thus, in summary, we have

{2 0<|x c<p::»|f \/_1 lx»—c

Then, we ask
Finally, what conditions must be imposed on ]x cl to gwarantee if «/_ i <g?

Recall that we Want'\/; - J; i < £ . However, from (2), we see it is sufficient to have

:/E‘”lx"“ci<5
But
(3) jglx d<so |- ~cf<ee

From (2) and (3), we see that we have two conditions that |x — ¢ must satisfy. That is, we must have
(4) 0<lr~c< pand|x—c|< ede

This éugge;sts that we require 0 < tx - r:| < &, whers § = mjn(p, svc )
Yerify & :
Show that & =m'm(p,$\/g ) works.
(5) 0<}x—c|<5z :>0<Ix d<p =

(2)1J— J—El< [x CI $mce [ Bydcief&.J_ "/—

Oexc|<s

Swmmatizing, using the nnderlined parts of (5), we finally obtain an answer to the original question posed
above: That is, we have, ford = min(p, gfc | that

0<]x~c|<§::>|\/;m\/gs<g &

i3
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Example 6: Let f{(x)=3" +x+1.Frove iiir%f{x)m 7, using & - 8.

Proof:
Set £ -Test:

Let & =0 be our test aumber, We must answer

@ - 0<x-2< ‘ 5=1 l:>¥(x2‘+x+1)——7\<£

Determine P:

First, we ask . ‘

Within what distance p of 2 should we begin cur analysis of the behavior of (x) =x* 4+ x+1near 27
Since polynomials are defined everywhere, we may use any value of p. For convenience we take p =1. This
means that our analysis of the behavior of f(x) near 2 assumes that, initially, x roust satisfy

@ O<px-2<p

Determine 0 :

Then, we ask
How are [x 2| and ](x"‘ +x+ 1)~ ‘Tl = \xz 4z 6‘ related?
33 ‘x""+x—6‘m[x—2”x+3l -
Then, we ask
How big can ‘xl become?
@ pl=ls- )+ s+l o5 Pt 2l=1+2=3

P

Summarizing, using the underlined parts of (4), we have
(5) 0<]x—~2|<pm>‘x1<3

Then, we ask
How big can the other factor lx + 31 in (3) become?

© |edspefl < 3rR=3+3=8

Sumumarizing, using the underlined parts of (6), we have
(M 0 <lx~21< pw‘x+3i<6

Then, we ask
What does (7) imply about the size of \(x2 + x4 1)—- 7\ ?
{8} ‘(xz + X+ i)m?‘ = \xz +x --6\ = ix ——2“x+ 3[By<m5 -ix-Z[

Summarizing, using the underlined parts of (8), we have
® o<lx-2<p m\(x’ +x+1)—7[<6-[x~2\
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Then, we ask

Finally, what requirements saust [x - 2| gatisfy € (xl + x4 l)w 7' <g?

Recall that we wantl(xz +x+ 1)-— 7l < & . However, from (9), we see it is sufficient to have 6- ‘x — 2| <&,
But6-|[x -2} <&« lx—2| <~Z~ . Thus, we also need

(10y |r-2<= <z
Thus, from (9) and (10), we see that we have two requirements that ]x cl must satxsfy That is, we must

have 0 <|x—2|< pand 0 < |x - 2|<g. This suggests that we require 0 < [x - 2| < §, where
{
(11) 5=mm(p,-g).

Verify & :

Show that 6 = min[ p%] works.

g
(12) 0<|x-2<8 s 20<fx-2<p = t(x rx+1)- ~7]<6-Jx~ z\amqux-wé'5Byd;<f.of56‘g“

Summarizing, using the underlined part of (12), we finally obtain an answer to the original question posed in

(1), for § = rmn( p,%}

e

0<fr-2 <= +xs1)-T|<s =




Homework. Let f (x) = —S—E(-%El . Use your calculator and intuition to determing lirré #{(x) by filling in the
; X X

following table.

ihnf(x)m?

20

Left Hand Limit Right Hand Limit
lim f{x)=1 tim f{x)=7?

20" 20"

x f (x) x ! (x)

i eo] ~ai Ov W) | W R
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-
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b2

fu—
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—t
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ot
Lh

b
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| et
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g
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Homework. Let f{x) =

e -1 . T
— . Use your calculator and intuition to determine lim F (x} by filiing in the
X 150

following table.

lim f(x)=?

20

Left Hand Limit Right Hand Limit
Hm f(x)=2? lim f(x)=1?

20" =07

x 7x) x f(z)

Wioeel ~al v v B W R o

et
o

fa—
[y

J—
™

[
L

=
B

ot
LA

-
[

-y
~3

Yt
oc

o
=

b2
[




