The Deﬁniﬁe Iri‘é:egmi

Thé Riemann Integral

However, how do we determine the area of a region R whose bowndary may consist of non rectilinear enrves, such as a parabela? To
see how this could be done let us consider the following process.

Suppose that a fonction f is continnous and non-negative on an interval [a, b] . We wish to know what it means to compute the area
of the region R bounded above by the curve y = f (x), below by the x-axis, and, on the sides, by the lines x =z and x = L, inshort,
the area under the curve = f{x}, as seen in the figure below.

¥ = f(x)

& ] s - %
We will obtain the area of the region R as the limit of 2 sum of areas of rectangles as follows: First, we divide the inferval [a, b] into

7 subintervals [xo', x ], [xl 2 X ], cens [x,,wl » Xy ], where a=xy <X <Xy <-- <%, =b.The intervals need not all be the same length.

Let the lengths of these intervals be Axy, A%y ,..., Ax, , Tespectively. This process divides the region R into nsirips (see the figure
below).

¥ = 1(x)




strip by a rectangle with height equal to the height of the carve y = f (x) at some arbitrary point in the

let's approximate each
] select some %y contained in that subinterval and use f (x; )as the height of the

-erval. That is, for the first subinterval fro. %
sctangle. The area of that rectangle is then f (x; )Ax1 .

we will choose some x; and calenlate the area of the corresponding

arly, for each remaining subjnterval ey b 25k<n,),
wletobe f Lt: )Ax . - The approximate area of the region R is then the sum of these rectangular areas, denoted by

> i

k=1

our estimate may be too large or foo small. For example, if we choose each x: to be

:nding on what points we select forthe x;'s,
\oint in its subinterval giving the maxium height, we will overestimate the area of R, called the Upper Sum (see the figure
#). ' _ .
LY
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the other hand, if we choose each x, to be the point in ifs subinterval giving the minimum hejght, we-will underestimate the area

2, called the Lower Sum (see the figure below).

¥
y = £(x}




The Beﬁnite inteoral

Thé Riemann Integral

hat is area? We are all familiar with determining the area of simple geometric figures such as rectangles and triangles.

However, how do we defermine the area of a region R whose boundary may consist of non rectilinear curves, such as a parabola? To
see how this could be done let us consider the following process.

Suppose that a function [ is continnous and non-negative on an inferval [a, b]. We wish to know what it means to compute the area
of the region R bounded above by the curve y = Fi (x), below by the x-axis, and, on the sides, by the lines x=gand x = b, inshort,
the area under the curve y = £{x), as seen in the figure below.

jxﬂﬂ

a 5 >

We will obtain the area of the region R as the ]JII]lt of 2 sum of areas of rectangles as follows: First, we divide the interval [a, b] into

n subintervals [xo,xl ], {xl;xz ], e [xH X, ], where a = x, < ¥, <Xy <+ <, =b. The intervals need not all be the same length.
Let the lengths of these intervals be Axy, Axy ..., A%, , respectively. This process divides the region R into # strips (see the figure
below). 4

y=1&)




t, let's approximate each strip by a rectangle with height equal to the height of the curve y = f (x) at some arbitraxy peint in the
nterval. That is, for the first subinterval [x0 , x1] select some x, contained in that subinterval and use f (xf )as the height of the

rectangle. The area of that rectangle is then f (x; )Aac1 )

ilarly, for each remaining subinterval [xk_l, x|, 2 <k < n,], we will choose some x; and calculate the area of the comresponding

angle tobe f (x; )Ax « - The approximate area of the region R is then the sum of these rectangular areas, denoted by

:P)mj:f(x;)-zkxk .

k=1

sending on what points we select for the x};'s, our estimate may be too large or too smail. For example, if we choose each xf io be
point in its subinterval giving the maximum height, we will overestimate the area of R, called the Upper Sum (see the figure
Iw). ' .

LN
y=Hx)

| the other hand, if we choose each x;, to be the point in its subinterval giving the minimum height, we will underestimate the area
R, called the Lower Sum (see the figure below).
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Now, if the suin Z Fi (x; )Axk approaches a limit as the Jength of the subintervals [Jck_1 ¥ } approach zero, regardless of the starred
k=

points x; chosen, we then define the area of the region R to be precisely this limit. Note the beauty of this definition. Since we really

do not lkmow what atea really is, we let our intuition develop a process that we legitimize as the analytic meaning of area under a
contintous curve. We will now formalize this process in the following development, called the Riemann Integral.

Riemann Sums

Def: P is said to be a partition of the clesed interval [a,b] if P is a finite subset of’ [a,b] which contains both @ and &.

You may index the elements of P so that if P = {x{, =, Xy, Xy Xganees Xpo Xpaeers Xpgo Xy -—-b}c,,;[a, b], you may conclode that
Ko = ACK <Xy <orn <Xy g <Xy <o <Xy g <X, =b

Def: Let P= {xa =, Xy, X0y X3 yeees X Xppsoers X X = b}_c_:_ [a,b] be a partition of[a,b]. We define
¢ Ax, =1, —x;,1<k<n, called the width of the subinterval eeq %)
s |Pl= max Axy, called the norm or mesh of the partition P.
Tr

Def: A partition P is said to be a regular partition of [a, b] if, for some nel, Axg = (b - a) » 1€k <n. In this case,
. H

Xy ﬂa+~£é-:£~)—k, 0<ksn.
n

Def: Let £ be a function bounded on-Ja, 5] and P = fxg = @, %1, %5, %350 Xp_gs g reres Xy B, = b} @ partition of [, 5]. By a Riemann
sum of f over [a, b], we mean the sutn represented by S} (P)! and defined by

def g '
Sy(P) = z . f(x;)Axk ,any choice of x; e fx, . x, ], 1<k<n
k==

Remark: If f20 on [a, b}, then S;- (P) can be thought of as an approximation to the area under the curve of £ from x=ato x=5.

Def: Let f be a function bounded on fa.B]. We say that f is Riemann integrable over [a,b} if there exists a real number I such
that Vg >0 38 >0 3, for every partition P = {x(, = X0, X0, Xgueves X 15X 0ee s Kpops Xy = b} of [a,b] and any choice of xz S [xk_l ,xk],
1<k <n, wehave

[ <& =57 (P)-1|<e 2

! Purcell writes Rp for Sy (P).
? The notation S } (P) for the Riemann surm in this limit definition means that it does not matter what xz's are chosen, We enly require that

xg @[:ck_l,xk], Isksn,



lef0

b b
1 this case, we say lim S} (P) exists, write [ = !Euﬁfmo S} (P) and denote I by J.f of j f (x)dx , called the definite/Riemann
Folings
o a

ntegral of f over [a,b],

The components that make up the Definite/Riemann Integral are named as follows:

Upper Limit of Integration

Integrand

Integral Sign URET——"SS J.f(x ) dx

Variable of Integration

Lower Limit of Integration

Remark: The limit 1i S} (P) satisfies all the usual properties of limits.
lpj—0

Remark: For x;, € [xk_} X ] , it is convenient sometimes to use one of the following:

1.

2.

X =a+-(—b—~_«-321c, 0 < k < n—1. The left end points of the regular pattition 7, .
R

X ma+(b"a)k, 1 < k < n. The right end points of the regular partition 7, .
n

*

+ A .
Xy =X % 1<k <. The midpoints of each subinterval b2l 15k s
2
% et b 1gk<n, af(x,:) is a maximum in fx,_;,x; ], assuming f is continuous on [2,8] -

The corresponding Riemann sum is then denoted by U, (P), catled the upper Darboux sum of f over [a,b]3.

i€ [xM,xk],i sk<n, af(x;) is 2 minimum in Jx,;,x; ], assuming £ is continuous on lo,8].
The corresponding Riemann sum is then denoted by L (P), called the lower Darboux sum of £ over [0, 8]

n
YIf £ is not continuous on {a,b], the upper Darboux sum U f(P)= ZM yAxy, where My = lub f (x). See a previous handout on the real

el XE{Xy 3, X
numbers, which discusses the least ypper bound property.
e
“If F is not continuous on [a,b], the lower Darboux stm L, (P)= Zm o Axy , where my = glb f (x) See a previous handout on the real
P XXy, %y

numbers, which discusses the greatest jower bound property.



Note that we always have L (P) < S} (P) U, (P)

We now state the major theorem on the existence of the Riemann integral. We shall not prove this theorem since the proof involves
ideas and techniques that are covered in a more advanced coutse.
)

Integrability Theorem: Let f be piecewise continuous * on [,5]. Then 1 is integrable over [a,5] ; that is, J-f exists. In

a
particular, if f is continuous on [a,8], £ is integrable over [z, 5].

Using the Integrability Theorem, we clearly have the following theorem.

Regular Integrability Theorem: Let / be continuous on [a, b} and Tt B, be the regular partition that corresponds to e N, where
Axy = M.Then, for any choice of x; & [rp.q,% ). 1 Sk <n,
n

b n
|7 e)=1m D s Jass
a k=l
Some conditions that are equivalent to Riemann integrability are given in the following theorem.

Riemann Condition Theorem: Let f be bounded on [a, b]. The following are equivalent.
1. f is Riemann integrable over [a,5].

2. VYe»0FPonfab]p0sU (P)-L (P)<s.

3. Ve»036>03,vPonlsb], [Pl<s=0sU,(P)-L,(P)<e.

4 1S5 ()= > et )aneand 57 5(P)= D rlok o whore iy 5tz €y ni ] them
==\ k=1

Ye>03Ponla, b]al Sy a(P)-57 (P)l < £, regardless of the chosen x; | , %y 5 € [¥pq', %% )-

n n
5. 1655 4(P)= Y Sty 7 ()= D Al Jam where w1y 5tz €lia ] then
E=l k=t

Ve>038>05,VPoula,b), [P|<5=

S}J(P)m S},z (P)] <&, regardless of the chosen x;,l , x;,z & Pt )

* A function £ is said to be piecewise continuous on [a, b] if f is continuous on [a, b] except, possibly, at a finite number of points.



. 0; if xisirrational A .
Example: Not all functions are Riemann integrable. Consider f (x)= . x.xs o . lona ort [O, 1], called the Dirichlet function. Let
1; if x isrational

Pefxy = 0,21, %, %y = 1} be a partition of the interval o, 1}, Now,

{. Since in any interval [xk_l ¥ ]there is an irrational number, we have m, = min | ¥ (x) = 0. Therefore,
Xl X g o X

#
Lf(P)mka Ax, = 0.
k=i

2. Since in any interval [x, ; ,%; |there is a rational number, we have M, = maX f{x)=1. Therefore,
XERXE X

1T
Uf(P)=ZM,C Ax, =1.
k=l

Thus, for the Dirichlet function, we have shown that L, (P)m Qand U, (P): 1, for any partition 2 of [Q, 1]. This says that f is not
Riemann integrable on {0,1].

The following theorem shows us that not all functions have to be continuous in order to be integrable.

Theorem: Every f 1 [a, b] is Riemann integrable on [a, b]. let P= {xu =8, X0, X2 Ko T Xy s Xy = b} be any partition of

{a,5]. Then, L, (P)= Z P )An, and U, (P) = Z F(x; }A%, . We then have

05U, (¢)-L,(¢)= 3 o) - Zf(kaa)Axk =Y trte)- Sl <

kel ke

Z{f(xk) rom) LB Pnz {7 )- 7} = 1A 6)- 7).

Tn summary, we have 0<U (P) L, (Py<}P|(f(®)~ £(a)), which implies f is Riemann integrable over {a,b]. =

Example: Using the above definition of the Riemann integral, show that the area under the curve f (x)m x" form x=aqto x=5,
b

where me Nand 05 a<b. Thatis, show J‘x’"dxm

aQ

bmﬂ am+!

m+l m+l

Proof: First let us consider some preliminary remarks so that the proof is easier to understand. Recall, for m €N,

m
3™ g = (B B A B AR 4w B4 ek B AT 4 AT + A" B A)= ZB”"jAf B~ A)
J=0
I A<B, then A" <B™" /47,05 j<m



We now begin our proof.

let P= {xe =, Xy, ,xk_l,xk, X gy Xy = b} be any partition of [, b}. In what follows think of x; as B and x;.; as 4, where

appropriate. Since f (x)“—: x™ Tonla,b], then, for 1 < £ < n, wehave

1 " m
(m+ Dy Axy = E xpy by S E xp ] | dxy Zx,’f Ay, =+ el Axy
J=0 =0 720
L]
But ™ —x = Zx;’" x{ 4 |Ax;. So,
J=0 :
(*) (m “i“l}x;lm‘k < x;’fﬂ "‘“xk:i] b= (m-i—i)xk Axk

Observe that,

(%) § : m+1 x]zf_-zil (xlm-r! x6n+1)+ (xgﬁni m+1 )+ +( m+} xmf; )+ (x:;wl —xf:il)ﬂJCfﬂ mxgﬂ"l = a™
k=l
This series is called a telescopmg series because of the way the terms in the sum cancel.

Summing (*} from & =1to k = n, we obtain

I
oSt st

ksl
Using our observation in (*¥) and dividing by m +1in (***), we finally obtain from {®*%)

7

L o Bl gme
mez CAx, <o sZ’”szU,,P VPof{a,b].
xm() Mxm R “xk ¢ =U_.(P), VPof{a,b]

Since L . (P)<S..(P)<U . (P),

<U . (P)-L.(P)=

()

n n L3
m m m m
E X Axk - E kalek = E (xk -—xk_l)Ark <
k=1

k=}

A e -5l -a”)

k=1

. bm+1 am+1
o)

m+l m+1

Thus,

<l -a”)




‘his clearly implies that

b
m+l m+i
jx'”cbcw fm ' (P)=] ],
il m+l m+l
g

ixzercises: Let f! (x) =x™  a,beR. Use the procedure in the above example 1o determine 1)-3}.

5
1) |x"deif a<bsOand miseven

o g

2)  |x"dreif a<bsOand misodd.

[-R ]

3y |x"dxif a<o.

Def: Flx) b d:-f F(b)—-F (a) or F (x)

a

x=b

- F(p)-Fla).

X

Def: F (x) d:-f Fla)or F (x) dif F (a).

a

x=a

b b
m4l
Rewriting our last example using our new notation, we obtain J.x”'dpc = x—:fi . If we look carefully at the result of this example of
m

a
determining area under a graph, we are led to the interesting observation that there seems to be a relationship between the process of
definite integration, which is just a fancy way of performing sums, and the process of differentiation. That is, we see that an

m+l xm+1

% and the derivative of
m+1

antiderivative of the integrand x" is ——

is x™ . This is no accident. We will soon develop a theorem

that generalizes this relationship to any continuous integrand £ over [a,5]. This theorem is called the Fundamental Theorem of
Integral Calculus.

The proof of the Fundamental Theorem of Integral Calculus will be divided into two paris. The first part, called the First Fundamental
theorem of Integral Calculus, shows us how to differentiate 2 variable integral.

The second part, called the Second Fundamental Theorem of Integral Calculus, shows us that one can compute the definite integral of
a continous function by using any one of its antiderivatives. This part of the theorem has many practical applications, because it
tremendously simplifies the computation of definite integrals.

The first published statement and proof of a restricted version of the Fundamental Theorem of Integral Calculus was given by James
Gregory (1638-1675). Isaac Batrow (1630-1677) proved the first completely general version of this theorem. Barrow's student Sir
Tsaac Newton (1643--1727) completed the development of the surrounding mathematical theory, while Gottfiied Leibniz (1646-1716)
systematized the knowledge into a calculus involving infinitesimal quantities.



Lemma: Tet 4,BeR.If V>0
a) A+e>B=AdzB.
by A>B-g= 4z B.

Proof of 1: By coniradiction. Assume 4 < B, Then, B~ 4> 0.Therefore, let &= (B - A)/ 2. By hypothesis,
A+e>B=> A+(B—A)2> B=>2A+(B— 4)> 2B => A > B.This is a contradiction. =

Proof of 2: By hypothesis, 4>B-g=> Ad+e>B=> 4> B,bya).

Properties of the Riemann Infegral

Let f,g be continuous on an interval 1 o [a B}, m= min f{x)and M = max f(x). Then,

xela, b xela, b

b
1. mip-a) j f £ M(p-a), < Max-Min Rule.
a

f! SI(P) given £>03Pon|[a,bl>

Proof: Since jf i
@

a) S;(P)-3< If<S}(P)+£

Also,
b) mipb-a)<S;(PysMb=a).

Combining a) and b), we obtain m(b~ a)-e<8p(P)-e< jf <87 (P)+& < M{p—a)+ . In summary, we have

b _ :
m(bma)—s < j'f < M(p—a)+e.Since £ > 0 was arbitrary, we have, by the above lemma applied to mp—a)-e < If and

a
b

to }f<M(b-a)+a,ﬂxat m{b-a)< Ing(b-a). -

o

2. a<fx)<p=ofp-a)< |f< ﬁ(b — a) <= Boundedness Rule.

Qe o

Proof: ofb—a)<mlp—a)< JfﬁM(b—a}<ﬁ(b— a)=> ab—a)< jf«:ﬁ(b—a).

b
3. f=c¢= jf = c{b—a) <= Constant Rule.



10
b
4, fz0= jf 20 <= Non-Negative Rule.
a
b b
Proof: By the Max-Min Rule, J.f >mlb-a)=0=> jf 20. m
a ' a
b
5. f>0= If >0 <= Positive Rule,
a

5 b
Proof: By the Max-Min Rule, jme(b~a)>0m> If>0.
) a a

b b b
6. J(f+g)=‘[f+ jgc:Sum Rule.
a a

a

b b
Proof: Let [, = jf, I, = Jg, Irig = Jb’&—g). Given ¢ > 038 > 0>, for all partitions Pof [, 8], we have that
a a

a
. &
b Pl <o =]sip)-15| <%

c. |Pf<s=

S}+g(P)'"If+gl<§ .
Let P be a partition of [z,5] such that |P| <&, and choose xy €[x,1,%; ], 1<k <, thesame for f,gand f+g.
Note that S}+g ()= Sy (P)+ S; (P) So, by a),b) and ¢), we obtain

!I.ﬂ"g “(If +Igl=,l(ff+g "S;;+3(P))+S}+3(P)“‘(If '*“Ig]=

(005 555 @), -3, - 532 <
(epve 5@l 55 @ s -5 ) <5 4543

b b
Thus, 1If+g —(If +Ig]<a. Since £ > () was arbitrary, we conclude I, =1, +1, or I(f-i»g)-—:ff%— '[g. L]
a a

a
5 b

7. Ia- f=a- If <= Sealar Multiple Rule.

a a

b
Proof: Let [, = jf and [, = .[a-f Given & > 038 >0 », for al] partitions P of [a,b], we have

a a

a) !1P“<6:»ia~3}(?)..a.gf|<f"2___
b <o =5 ()~ Las| <3

Let P be a partition of [a,5] such that |P] < 5. Note that S, /(P)=cx-S;(P). So, by a)and b), we obtain



|1, —I‘,_,|m|a-1, —a-s}(P)m-s}(P)—ia.flz

’(a'lf _“'S}(P))"‘(S;f(‘o)"[mf]Sl(a"ff “‘“'S}(P)l"fl(sz-f(f))‘fa’f}<“2"+“2“=5-

: b
Thus, ia-IJ.--—Ia_f‘»(a. Since £ >0 was arbitrary, we conclude that 7, , =1, or ja-fzajf. i
a a
b

b 5
8. j(cz f+ B g) = Jf + Ig < Linear Rule. This is equivalent to the Sum Rule together with the
a a

a

Scalar Multiple Rule.

b
9. f<g= jf < Ig <= Non-Decreasing Rule.

a a

‘ . 7 ‘
Proof: f<g= (g - f ) 2= J(g -f ) 20 ,by the Non-Negative Rule. By the Linear Rule, we then obtain

a

o=

& b
g |7-e-r)=0=

D ey

b
f<lg =
a

=1

F 3
10, f<g= I f< j,g <= Increasing Rule,

@ a

b
Proof: f<g=(g—f ) >0= I(g -f ) > 0, by the Positive Rule. By the Linear Rule, we then obtain
a

-4 & b b b
g [r=[le=r)>0= [r< fe

o
def
11 Jf = 0 < Zero Width Interval Rule,

a

a b
def
2. j f=- j f < Order Infegration Rule,
b

a

b c b
13, a<e<b= jfm !f+ jf <= Additive Rule.
a a «

Proof: Since f is continuous on [a, b], it is continuous on [a., c] and on [c, b] . Therefore, Ve > 035 > 0>

11



14.

a. VPof[ab], |P|<é=

b
500 1<%

b, vQof [ac), [0]<s=I5Ha)- Jf <=

¢. VRoflb], |Rj<s=

b

&

Sf J.f<§
[+

Let 0 and R be apartitions of la, c]and [e, 5], respectively, such that HQ“ <& and HR[] <&.LetP=0QuUR.Then
1P} < 6 and 87 (P)= 57 (Q)+ S (R). So,

]fw[]f+ ]}f} = }f—S}(P)+S}(P)M{i'f+ ]‘f}lm
{I]‘f~S*(P)}+(S}(Q)+S}(R))-—{c'[f-ah Tf -
”}f~3}(P) {]f—s}(Q)Hbjfws}(R)J;g
L& J \a :
rl]f_S}(P)\ N {]‘f._s}(g)] +l(].f—s}(R)]
\a a e

Thaus, ?fw(]f%— ].f}l<& Since ¢ was arbitrary, ]}= ]‘f;].f, "

If f is continuous on the smallest interval that contains a,b,and ¢, then If == I I+ If , no matter what the order of

a a [+

£ & &
bt =g
3 3 3

a,b,andc are <= Interval Additive Rule.

Proof: Consider the case ¢ < b < a. The other cases are handled in the same way. Now,

o A B
a ¢ c ¢ ¢ b e ¢ b c b a a a e

cases are done in the same way. =

12



Exercises:

b b
1. Letbe p{x} apolynomial and a <. Show that Jp(x)dx = Ip(x)dxl .

a
a

x+h

f
Flx+h)-Flx) _ ; .
h k

k-
2. Let f be continuous on the closed interval [a, b] CIE F(x)m j [, show that
a

Fundamental Theorem of Integral Calculus (FTIC)

b
The relation jp(x)dx = Ip(x)a’x‘ in exercise 1 above is an example of the Fundamental Theorem of Integral Calculus, but for

a
o

polynomials. We will now begin to show that this theorem also holds for any continvous fon [a,b].

First Fundamental Theorem of Integral Calculus: Let f be continuons on the closed interval [a, b], and let
x

F(x)= jf, a<x<b. Then
a

a) Fj (x) = flx),xe [a, b).In particular, F (a) =f (a).
b Fx)=flx).xe (2,5]. In particular, 7. {6)= r(B).
¢) F iscontinuous on [a, b}.

& F'(x)=r()xelab)]

Prooft

@) Let x&]a,b)and hold fixed. Since f is continuous on la, 8], . it is right-hand continuous at x. Therefore, given
£>036>0>3
Ogthcﬁzﬂf(t}—f(x} <g<> flx)-z <f(r)<f(x)+e:.Choase 0<h<&.Then,

x4k x+h x+h

tely,xth]m0<t-x<h<d= flx)-e< fl)< fx)re= I(f(x)—s)dx«: If(r)dm [(f(x)—&«&')aﬁc::}
Tbf . J.f(t)dt
(Flx)-e)n< v[f(t)dt<(f(x)+s)h::>f(x)—-s< £ 7 < flx)+e=

X

Flx)-e<

x+h)—Flx
m-—————-MF( 2F()<f(x)+£<:>

wmﬂxﬂ <e.

13



In summary, ¢ <h<é=> Mw]‘(x

A

) let xela, bland hold fixed. Since f is continuous on [a, B], , it is left-hand continuous at x. Therefore, given
£>035>0>»

0$x——t<5:>1f(t)~—f(x]<£¢:>f(x)—€<f(t)< f{x)+&.Choose 0<—h<&.Then,

* <g.Thus, Fi{x)=f{x),xe la, b). In particular, F| (a)=7 (a).

relethx]m 052t <-h<d= flx)-5 < f)< f)re= J’(f(x)_g)dx< If(t)dt< I(f(x)-l—s)dx::»

x4h x+h x+h
z4h

% If (e)dt J.f(t)dt
~(flx)-eh< J.f(f)df< L)+ ey = flx)-= <~’~‘—‘i’-’-:h~—— <fx)ree = =

h

x4h

< flx}ree

, x + k) Fix)
fla)- o < TrxB-1)

fm(,if%)_f(i‘).mf(xi <z,

In summary, 0<-h<dé=

fmgﬂ—f(xi <e. Thus, F'{x)=f{x),xela b). In particular, F' (B)= 1)

c) Since differentiability implies continuity, items a) and b) imply that F is continuous on [a, b].

d) Also, from items a) and b), we see that x € (a,b)= Fl(x)= S(x)= F!(x). Thus, F{x)=fx),xe(ab). =

Second Fundamental Theorem of Integral Calculus: Let £ be continuous on the closed interval [a, b], and let

x
Fx)= |f, a<x<b.If G is an auti-derivative of £ on {a, ), then

a

jf(x)dmc(b)—c(a).

Proof: By the First FTIC, F'(x)= f(x)on (a.b), and since G (x)=f(x)on (a,b), we have F' (x)=G'(x) on (a, b). Finally, since
F,G are continuous on [a, b], we have F' (x) = G(,x)+ Con [a, b], for some constant C. What is C? Now,

Fla)= Jlf(x)dx == 0= F(a)= G(a)~§~C =5 C = -G(a).So, j‘fﬂ F(x)mG(x)—- G{a)on [a, b], In particular,

[r=rF@)-ct)-ola). =



Stated another way, the Second FTIC says

jﬂf(x)dx = jf(x)dx b

Properties of the Riemann Integral (Continued)

Let f,g.and g’ be continuous on {2, b]and u{x), v{x} appropriately differentiable. Then,
V(x)
15. — |f@at=r (v(x))——w Flulx )) . <= Leibuiz Integral Rule.

”)

Proof: By the First FTIC and the Cham Rule, we have
»(z) v{z)

= (‘; (t)dtmm«»- ([}f(t dH»m If(t)du—— J)f(t)dt—— th)dt»-»——- jf(r)dr-
f (V(x»g—f (”(x))}fx'

i6. Let fz0.Then jf(z)dt =0 f=00n [a,5]. & Zero Rule.
Proef: The “if part” is trivial. Therefore, we shall only prove the “only if” part. So, assume that j ¥i (t) dt =0. Since

f=0, jf(t)dt 0,Vxefa,b]. Now, jf(t)dt OVxe[ab::D Jf(t)dr OVx@(a,b)::»

f(x) 0 Vxe(a, b):>f() 0, ‘v’xe[a, ] by continunity, =

= -Subsiitetion Rule.

7. [re)stu= [ra
Proot: Lst D, (7(u)= /(). Then, D.F(e(e)= P (el )= S ele)s ). Thus,

[reed@s=ritc=rie| - [

, B

u=g(x)
b glb
is. jf(g(x))g'(x)dx-—- j () <= Change of Variable Rule.
sla)
sl
Proof: Let D, (F (u)) f (u) Then, j‘f {glx)e (x)dx F(g(x)) = Flu ) If (u)du. u
&la)

15
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i9. [} =2 ff ,where f («»x)= f (x) & Here f is said to be even. A Symmeiry Law.
a

20. ff =Q, where f (— x)=—f (x) <= Here f is said to be odd. A Symmetry Law.
o

b b
21. I < j[ f14= Absolute Value Rule.

a a

Preof: Clearly, we have ~|f]< F<|/] en {a,b]. By the Comparison Rule, we then have [a,2]. By the Comparison Rule,

we then have - b]‘[f[sf:s jlf[::;> bjf < bj‘[f].

b
_[f
def
b

22 fo =

[a, 5]

_a‘..
b

jf
,CE (a, )<: First Mean Vzlue Theorem for Imggra!s (First MVTI).

2. fle)=3-

Proof: The theorem is trivial if f is constant on [a, b]. Therefors, we may assume that 7 is pot constant on [a,b]. By the

. ok b x )
Max-Min Rule, we have that m(b~a)< j F<M(p-a). if mp-a)= J}, then JU(:)- m)dt =0,¥x e [a, b]. This would

then imply that f =mon [a,5]. This contradicts the fact that f is not constant on [a,5] Thus, m (b-a)< J‘f In the same

b
_[ 7
b], by the Int;nnediate Value

way, we also have J.f<M(b——a).

[r
Theorern, there exists ¢ & {a,b) such that f (c)= Py

+p
24. f f= j}, where f is periodic with period p <= Periodic Rule for Integrals.

b+ p
Proof: | f (x)céc f(x + p)dx J ¥ (u) du <, where we have used the change of variablex = x + p. =

atp a+p
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Applications of the Second FTIC

The Second FTIC can be restated in this way:

/(5)ds = F(s). = F(2)-F(a)

A function such as F is called an accumulation function because it accumulates area under the graph of its derivatives for x 2 a.

Position as an Accumulation Fanction:

Exercise 1: An object moves along a coordinate line with velocity v(t) = 6> — 6 units per second. Its initial position at time # = 0

is 2 units to the left of the origin.
a) Find the position of the object 3 seconds later.

b) Find the fotal distance traveled by the object during those 3 seconds.

Exercise 2: An object moves along a coordinate line with velocity v(t) = gin 2¢ units per second. Its initial position at time £ = 0 is
1 unit to the right of the origin.
a) Find the position of the object 77 seconds later.

b) Find the total-distance traveled by the object during those 77 seconds.

Some Quantity as an Accnmulation Function:

If F (I) measures the amount of some quantity at time £, then the Second FTIC says that the accumulated rate of change from time
f=ato t = bis equal to the net change in that quantity over the interval [a,b].

Exercise 3: Water leaks out of a 55-gallon tank at the rate V'(t) =11-1.1¢, where ¢ is measured in hours and V' in gallons.
Inifially, the tank is full. '
2) How much water leaks out of the tank between 7 == 3 and £ = 5 hours?

b) How long does it take until there are just 5 gallons remaining in the tank?
Bxercise 4: Water leaks out of a 200-gallon tank at the rate ¥'{¢} = 20—, where ¢ is measured in houss and ¥ in gallons.
Initially, the tank is full.

a) How much water leaks out of the tank between 7 =10 and # = 20 hours?

b) How long does it take until the tank is drained completely?



Finding Area Between Two Cuarves

Slicing, Approximating and Integrating with Respect to the X~Axis

~onsider two curves defined by the two functions y = f (x), y= g(x) continuous on the closed inferval [a,b]. We want to
sompute the area of the region €2 between these two curves from X = dto X =h (See Figm‘el).

by

oY

Figurel
let P= {xo YN TS TR SRR TS S b} be g partition of [a, b]. In this way, we slice the region Q into neN subregions. Let
A4, ,1<i < n, denote the the area of the i* subregion. We then approximate Ad; by the rectangular area (f (x: )—- g(x;) ., where
x} is any sample point in fx,;,x,] Thus, A4 = [f (x: )w— g(x: ))Ax, , 1< i<n. Intuitively, we feel that as [|P| - 0, these
approximations become better. Therefore, we define 4 , area of €2, by integrating (f - g)over [a, b}. That is,

18
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If we are given two curves defined by the two fimctions x = F(y),x = G(y) continuous on the closed interval [c; d], then we employ
the same process as above only with respect to the 3 — axis, as shown in Figure 3 and Figure 4 below.

Sticing, Approximating and Integrating with Respect fo the Y-Axis

In this case, we define

Figure 4
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‘xercise 1: Determine the area of the region enclosed by y = x* and y= Jx.

first of all, just what do we mean by “area enclosed by”. This means that the region we’re interested in must have one of the two
urves.on every boundary of the region. So, hereisa eraph of the two functions with the enclosed region shaded.

Al

13+
i.
0.8

.6

Exercise 2: Determine the area of the region enclosed y =sinx, y =cosx,x = %-and the y - axis. Here is a sketch of the region.
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Exercise 3: Determine the area of the region bounded x =—y? +10and x = (y-2)" . Here is a sketch of the region.
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Determining Volume

Volumes by Cross Sections

A cross section of a solid is a plane figure obtained by the intersection of that solid with a plane. The cross section of an object
‘herefore represents an infinitesimal "slice” of a solid, and may be different depending on the orientation of the slicing plane. While
‘he cross section of a sphere is always a disk, the cross section of a cube may be a square, hexagon, or other shape. Some other
~ommon cross sections are rectangles, triangles, semicircles, and  trapezoids.

Integration allows us to calculate the volumes of such solids. That is, we may define the volume of a solid as a limit of a Riemann sum
of cross sectional areas A(x). This is similar to the way we defined the area between two curves. Let S be a solid that Lies between

x=ga and x = b.Let the continuous function A(x) represent the cross-sectional area of S in the plane through the point x and
perpendicular to the x-axis, as seen in Figure (a) below. The volume of S is then given by Formula (a) below.

(a) Cross sections
perpendicular to x-axis

Figure (a) Formnla (a)

On the other hand, let S be a solid that lies between y=¢ and y = d.Let the continuous function A(y)represent the cross-sectional

area of Sin the plane through the point y and perpendicular to the y-axis as seent in Figure (b) below. The volume of § is then given
by Formuta (b) below. :

A

W

|

) {b) Cross sections
* perpendicular to y-axis

Figure (b) Formula (b)
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Ezsmple: Find the volume of the solid shown below. The bage of the solid is the region bounded by the lines

Fx)=t mgw, glx)= —-1+-§~, and x = 0. The cross sections perpendicular to the x-axis are equilateral triangles.

X . )
Cross sections are equilateral triangles. Triangular base in xy-plane

Solution: The base of each equilateral triangular cross section, area of each equilateral triangular cross section and corresponding
volume element of the solid are

Base of Triangular Cross Section: Base = (l - —;—i—) - (— 1+ -;fm) =2—x
Cross Sectional Area of Equilateral Triangle: A(x) =

Volume Element: dV = A{x}dx = -‘g(z ~xP &

Because x ranges from 0 to 2, the volume of the solid is

Y= J.dv——- J.-i—i(zmx)zcﬁc=% (x—z)zabcmg("—“;)—s;:%‘g

0

Now that we have the definition of volume, the challenging part is to find the function of the area of a given cross section. This
process is quite similar to finding the area between curves.

Selids of Revolution

Most volume problems that we will encounter will require us to caleulate the volume of a selid of revolution. These are solids that are
obtained when a plane region is rotated about some line. A typical volume problem would ask, *Find the volume of the solid
generated by rotating the region bounded by the some curve(s) about some specified line." Since the region is rofated about a specific
fine, the solid obtained by this rotation will have a disk-shaped cross-section. We know from simple geometry that the area of a circle
is givenby A=z 2 . For each cross-sectional disk, the radius is determined by the curves that bound the region. If we sketch the
region bounded by the given curves, we can easily find a function to determine the radius of the cross-sectional disk at point x.
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For example, the figures above illustrates this concept. The figure to the left shows the region bounded by the curve y = Jx and the x-
axis and the tines x = Oand x =2. The figure in the center shows the 3-dimensional solid that is formed when the region from the first
figure is rotated about the x-axis. The figure to the right shows a typical cross-sectional disk. A disk for a given value x between 0

and 2 will have aradius of y = Jx . The area of the disk is given by 4= n’(\/;)z or equivalently, 4 == x. Once we find the area
function, we simply integrate from @to b to find the volume. In this example, the volume ¥ in question is given by

b

2 2 2
: 2
Vo= jA(x)dx: jn‘xdxzxjxdx&n%—l =21
h 0

4

E=3

Variations of Volume Problems

There are two variations in problems of solids of revolution that we will consider. The first factor that can vary in this type of volume
problem is the axis of rotation. What if the region from the figure above was rotated about the y-axis rather than the x-axis? We would
end up with a different function for the radius of the cross-sectional disk. The function would be written with respect to y rather than.

x, so we-would bave to integrate with respect to y. In general, we can use the following rule.

If the region bounded by the curves and the lines x=a and x= & is rotated about an axis parallel to the x-axis, write the integral with
respect to x. If the axis of rofation is parallel to the y-axis, write the integral with respect to y.

The second factor that can vary in this type of volume problem is whether or not the axis of rotation is part of the region
that is being rotated. In the first case, each cross section that is generated will be a disk while in the second case, each
cross section that is generated will be washer shaped. This creates two separate styles of problems:

The Disk Method: The disk method is used when the cross sections are disk shaped. The radius of a cross section is

determined by a single function, f (x) The area of the disk is given by the formula, 4=x r? = A(x) = 2 (x), where
b b

r = f(x). The corresponding volume would then be V" = IA(x)dx = | ?{x} dx. The figure to the right shows a

a a

typical cross-sectional disk.
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CULET ‘The Washer Method: The washer method is used when the cross sections are washer shaped. The radius of a
cross section is determined by a two functions, f (x) and g(x) This gives us two separate radii, an outer

radius, from f(x) to the axis of rotation and an inner radius from g{x) to the axis of rotation. The area of the
washer is given by the formula, A{x)= x{f 2{x)~g* (x)], where outer radius = f(x)and inner radius = g{x).
&

b
The corresponding volume would then be ¥ = IA(x)afx = jﬂ:[f *(x)-22 (x)] dx, The figure to the left shows

a a
a typical cross-sectional washer.

Exevcises:

1. Find the volume of the solid that is generated by rofating the region bounded by the curves y = x?,x=0,and x = 2about the
x-axis. g

2. Findthe voiuma of tbe solid that is generated by rotating the region bounded by the cutves y = 2, x=0, aﬂd % = 2 about the
y-axis.

3. Find the volume of the solid that is generated by rotating the region bounded by the curves y = =+/x and y=xaboutt(a) the
x-axis and sbout (b) the y-axis.

4. Find the volume ofthe solid that is generated by rotaung the region bounded by the carves y = e, x y=6,and y=1about
the x-~axis,

5. Find the volume of 2 sphere of radius r.

6. Find the volume of a circular cone-of radius » and height /.

7. The base of a solid is the region between the parabolas x = y?and x=3-2 »2 . Find the volume of the solid given that the
cross sections perpendicular to the x-axis are squares.

8. Find the volume of a pyramid whose base is a square with sides of length L and whose height is 4 (see the figure below).

4

x

Three and Two Dimensional Views of a Cross Section



9. For a sphere of radius r find the volume of the cap of height & (see the figures below).

==

Three and Two Dimensional Views of a Cross Section

Aly) R

Two Dimensional View of a Cross Section

26



10. Find the vohmne of the solid whose base is a disk of radius r and whose cross-sections are equilateral triapgles (see the
figures below).

Three Dimensional Views of a Cross Section

Two Dimensional Views of a Cross Section

27
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“he axes of two equal cylinders of radius r intersect perpendicularly. Find the volume common to the two cylinders.

fint: First, the equations of the two cylinders are given by x4yt = r2and x? + 2% =»%. In the figure below you see one eighth of
he total volume in the first quadrant with a typical cross sectional area shaded. In fact, the cross sections are squares. To see this,
tom the figure we first note that the height of the rectangle is z and the width is y.From the equations, we then

sbtain 2 =12 —x? = 2% = y = z. Thus, our cross sections are squares.

{x2)




