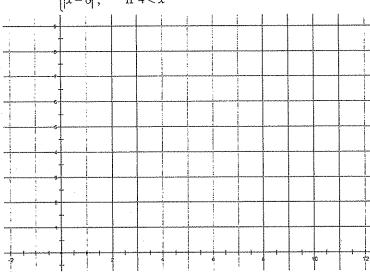
From: Dr. Isadore Brodsky


Exam III Date: 11/20/2013

o: Students of Math 3023 Time: 5:30 P.M.

The students are Responsible for the Following Topics and Procedures

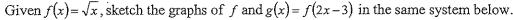
1) Graphing Piecewise Defined Functions:

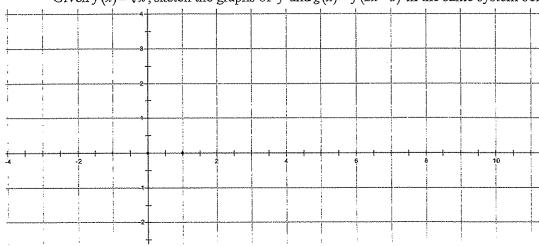
If
$$f(x) = \begin{cases} (x-1)^2, & \text{if } x \le 2\\ x/2, & \text{if } 2 < x < 4, \text{ graph } f \text{ in the system below.} \\ \left| x-6 \right|, & \text{if } 4 < x \end{cases}$$

2) Optimization Problems Involving the Parabola

- i. Find the dimensions of the rectangle that is inscribed in a right triangle with legs of length 6 and 8 and has the greatest area. Also find that area.
- ii. Find two real numbers whose difference is 36 and whose product is a minimum.

3) Transformations of Functions


- a) The student must know the basic transformations:
 - i. Scale Change: $S_{\delta}(x) = s \cdot x$, includes both horizontal and vertical
 - ii. Translation: $T_t(x) = x + t$, includes both horizontal and vertical
 - iii. Reflection: R(x) = -x, includes both horizontal and vertical
- b) The student must know how to express the transformation of a function f as a composition using the basic transformations. Example: Express g(x) = 3f(2x) as a composition of f and the basic transformations: $g(x) = (S_3 \circ f \circ S_2)(x)$
- c) Exercises: Express as a composition:


i.
$$g(x) = -f(x-3)$$

ii.
$$g(x) = f(-x) - 3$$

iii.
$$g(x) = 3f(-2x + 5) + 7$$

d) The student must be able to sketch the transformation of a given function in the same system of coordinates as the original function such as:

4) Testing for Symmetry

- a) The student must know how to determine if a given function f is symmetric with respect to the y axis by applying the test f(-x) = f(x)
- b) The student must know how to determine if a given function f is symmetric with respect to the origin by applying the test f(-x) = -f(x)

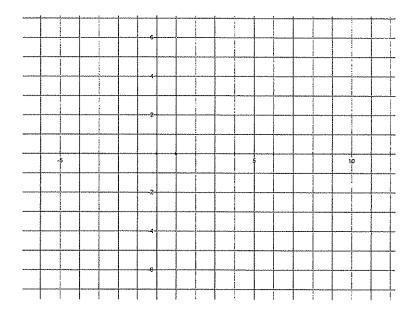
5) Inverse Functions

- a) The student must know the definition of a one-one function
- b) The student must know the horizontal line test to determine if the graph of a relation is the graph of a one-one function
- c) The student must know the definition of an inverse function
- d) The student must know the Theorem: f one-one $\Rightarrow f$ has a unique inverse
- e) The student must know how to determine the inverse of a one-one function, its domain and its range.
 - i. Exercise: If $f(x) = \frac{x+3}{x-2}$,
 - 1. Show f is one-one:
 - 2. Find $f^{-1}(x)$:
 - 3. Determine $D_{f^{-1}}$:
 - 4. Determine $R_{f^{-1}}$:
 - 5. Verify $(f^{-1} \circ f)(x) = x$:

6) Arithmetic Sequences and Series

- i. Exercises:
 - 1. In the arithmetic sequence $-3,1,5,\cdots$ which term is 149?
 - 2. For what values of x are the terms x, 2x + 3, 4x + 18 consecutive terms of an arithmetic sequence?
 - 3. Find the sum of the first 20 terms of the arithmetic sequence 4, 6, 8, 10,...
 - 4. Find the sum of the sequence -8, -5, -2, ..., 7.
 - 5. Evaluate $\sum_{k=1}^{14} (1-2k)$

- 6. Find t_{100} and the common difference d and the nth term t_n of the arithmetic sequence, if $t_7 = 31$ and $t_{20} = 96$.
- 7. A display of cans on a grocery shelf consists of 20 cans on the bottom, 18 cans in the next row, and so on in an arithmetic sequence, until the top row has 4 cans. How many cans, in total, are in the display?
- 8. How many terms of the arithmetic sequence -3,2,7,... must be added together for the sum of the series to be 116?


7) Geometric Sequences and Series

- i. Exercises:
 - 1. For what values of x are the terms x, x+2, x+3 consecutive terms of a geometric sequence?
 - 2. Find the 9th term of the sequence $1, \sqrt{2}, 2, \dots$
 - 3. Determine $s_n = 1 \frac{1}{3} + \dots + \left(-\frac{1}{3}\right)^{n-1}$
 - 4. Find the indicated sum $\sum_{k=1}^{n} (0.5)^k$
 - 5. Find the geometric mean of 8 and 6.
 - 6. Insert three geometric means between 1 and 81.

8) Sign Charts and Graphs of Rational Functions

Consider the function $g(x) = \frac{x+3}{x-2}$. Determine:

- i. its sign chart:
- ii. its domain
- iii. its range:
- iv. any horizontal asymptotes:
- v. any vertical asymptotes:
- vi. all x intercepts:
- vii. any y intercept:
- viii. the graph of g(x):

