Symbolic Logic and Reasoning V7

We all use arguments in our daily life. We use them in philosophy, in the sciences, in the humanities and every day in
life with family and friends. Arguments are the tools we use in reasoning to convince someone of a point of view.
And Jogic is the study of these tools in order to determine differences between valid and invalid arguments, those
which are worthy of use in our reasoning and those which are not.

In order to begin to study arguments, logic first classifies them according to their different forms. In order to effect
this classification, it has proven useful to use a variety of symbols. The way in which logicians do this is to create a
formalized language and provide for translating and abstracting from ordinary language into this formalized language.
This formalized system is called Symbolic Logic. Tust as it is easier to study the laws of arithmetic by using the
abstraction of algebra, it will be easier to study reasoning by using symbolic logic to discover, for example, criteria of
consistency and validity.

In summary, symbolic logic is a formal theory of arguments that studies how they are used in reasoning to arrive at

conclusions. Tts essence consists of abstracting the form of a statement away from its content. Within this formal

abstraction, we will develop and represent logical principles through a system of primitive symbols, axioms, and rules

of inference. This framework will help us identify valid argument forms that will permit us to infer valid conclusions

from given premises through the concept of proof. The symbolic logical systems that we will study are those of the
Statement Calculus and some Predicate Calculus.

The Statement Calcalus

We will begin our study of symbolic Jogic by examining how reason is used in formal arguments within the Statement
Calculus. In this system of logic, the truth-value of a statement is determined by the truth-values of its component
statements. But first, what is a statement?

Definition: A statementisa declarative sentence that is either true or false but not both.

In analyzing statements, one of the first things we note is that some statements are simple while others are compound.
This is seen in the following examples.

Definition: A simple statement is a statement that has one subject, one predicaie, and is not the combination of other
statements through the use of connectives like “not”, “and”, “or’, “if-then”, and “if and only if”". Such statements
are indivisible.

Some of the following examples are based on the comic strip character Spiderman, alias, Peter Parker, with his
girlfriend Jane Watson or Thor, the hammer-wielding Norse god. Notice that the simple statements consist of &
single subject, which is underlined, and a single predicate, which is underlined twice.

Example Set 1:
(1) Spiderman is a superhero. (5) All superheroes battle crime.
@) 2 isirrational ©) 2+ is8
(3) Some superheroes can . (7) All students in this class will receive the grade “A”.
(4) Thereal nymber Tt is transcendental, (8) Thor batiles the Frost Giants,

We use simple statements to build compound statements.

Definition: A compound statement is a statement which consists of a number of simple statements joined together
with one or more connectives.



Example Set 2: Notice that the following compound statements are formed from simple statements by means of the
underlined connectives.

(1) Spiderman is a superhero and he cannot fly. (6) Itis not the case that V2 is rational. .

(2) The square of an integer is odd if and only ifthe  (7T) The real number 7t is not the zero of any polynomial
integer is odd. with integer coefficients.

(3) Spiderman is not a superhero. (8) Thor is a superhero or he can Ty

(4) If Socrates is a man, then Socrates is mortal. (5} If Socrates is not mortal, then Socrates is a god.

(5) If\Z is irrational, then N2 cannot be written as (9) If1 study hard, then I will receive an excellent grade in
a repeating decimal. this course.

Why are the following sentences not statements?

(1)  This sentence is false

2y x+7=3x

Syntax of the Statement Calculus

Just as in Algebra, in which one uses variables to denote numbers and symbols, like “+” for “addition”, to denote
operations, and parenthesis to eliminate ambiguity, so in the Statement Calculus one uses variables to denote
statements, various symbols to denote connectives, their operations, and parentheses to avoid ambiguity. That is, our
lexicon will consist of variables, connectives and parentheses/brackets. The formalization of the Statement Calculus

then proceeds as follows.

Definition: Symbols like “a”, “&”, “¢”, etc, and such symbols with pumerical subscripts are called statement
variables and can symbolize arbitrary simple statements.

Definition: The connectives that are used to form compound statements are given in the following table.

Connectives
Negation not ... —t...
Conjunction Loand .. AL
Disjunction v OT s A
Conditional if ..then.. D
Biconditional | ...if and only if ... -

Figure 1
What is the logical form of a statement? First we define what we mean by an expression.
PDefinition: An expression is a finite sequence of statement varjables and connectives.
For example, the sequence “= gq A" is an expression but is not well formed. This sequence can never be a logical
form. The expressions that can represent statements are called logical forms, formal statements, well-formed
formulas, or, simply, formulas. That is,
Definition: The logical forms' of the Statement Calculus are expressions generated by the following clauses:

(a) Every statement variable is 2 logical form.

(b) IfA,B are logical forms, then so are (A AB), (A V B), (meA), (A = B),and (A< B).

! We will frequently use the term “formula” for the expression “logical form™.
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(¢) Nothing is a logical form unless it can be obtained by repeated applications of clauses (a) and (b).

As an example, show that the expression “(p=q)= ((w‘q,) = (mp ))” is a logical form by illustrating its
derivation in a decomposition tree.

Decomposition Tree

Clause (b) —> ((;p = ) = ((~g) = (~p )))

N

Clause (b) —> (p = 4) ((-g) = (~p)) <— Clause (b)

|

In this decomposition, each node is a sub-formula of the root, the given formula. Starting with the leaf nodes, the
variables of the formula, each successive node is the sub-formula gotten by applying a clause to the nodes of the
immediate branches below until the formula “(z = ¢) = ((~g) = (g ))” is reached.

Clause (a) —> ¥ 74 -

=

~p «— Clause (b)

p €<— Clause (a)
Figure 2

We elirinate structural ambiguity in the Statement Calculus by the use of parentheses. For example, p = ¢ V7~ is
ambiguous so that we need to write cither (p=g)Vr or p=(gVvr), depending on the form we intend.
Because parentheses can become cumbersome t0 use, we will adopt the convention that the connectives’ binding
precedence in decreasing order is as exhibited in Figure 1. That is, “~” has the highest binding precedence, “A” the
next, “v>* follows, “=" the penultimate, and “e>” the least. Logical operators of the same precedence are left
associative. Therefore, the formula “pV g & =" = & = +” means

(pvag)e (((—vf”’) =)= t)

Note, if we intend the form “(g V @) A+, then the parentheses must remain because “A” has a higher binding
precedence than “v”.

To avoid the confusion that can arise when discussing formulas and statements, we will use the following fonts and
letters to distinguish between the two:

Statements a,4,c .. Variables for arbitrary simple statements, from the whole alphabet
Statements A, B,C .. Letters naming a particular simple statement, from the whole alphabet
Formulas A, B,C .. Metasymbols for arbitrary formulas, from the whole alphabet

" Figure3

With the above formalization, each of the above example statements has a logical form. That is,
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Definition: The logical form of a statement is its symbolization. It is what remains after you remove its content.
As some examples, let us symbolize or determine the logical form of the following compound statements,
Example Set 3:

(1) If p symbolizes Thor won the first battle and g symbolizes Thor won the second battle, determine the logical
form of the following compound statements.

Staternents Logical Form
(a) Thor won both baitles. pPAG
(b) Thor won at least one battle. rVg
(c) Thor lost both battles. —p A g
(&) Thor lost at least one batle. —p V g
(¢) Thor won at most one batile. —p V{p A =4)
() Thor lost at most one battle. pV(=pAg)

Figure 3

(2) If p symbolizes The superhero is Spiderman, 4, symbolizés The superhero will battle evil, and # symbolizes
The superhero will wed Jane Watson, determine the logical form of the following compound statement.

If the superhero is Spiderman, then the superhero will either battle evil and will not wed Jane Watson or the
superhero will not battle evil and will wed Jane Watson.

Replacing each statement with its correspbnding symbol and each verbal connective with its corresponding symbolic
connective, we obtain the following logical form.

=g A=t Vg AF
Recall, this means

2= (A GV (Ga)Ar),

because of the binding precedence of the connectives.

Observe that if a compound statement is symbolized in this way, then only the bare logical bones are exposed, a mere
logical form, which several different statements might have in common. It is precisely this which will enable us to
analyze deduction. This is so because deduction has to do with the forms of statements in an argument rather than
their meanings.

Exercise Set 1: Place the following statements in logical form.

(1) You will receive an A if vou work hard and the sun shines, or you work hard and it rains.

(2) The only superhero who thinks that “with great power there must also come great responsibility” is
Spiderman.

(3) The only superhero that battles evil and his own angst of human uncertainty is Spiderman.
(4) The real number 7 is not the zero of any polynomial with integer coefficients.

(5) A thought is a great truth if and only if the thought is applicable to all men and all times.

(6) The natural number 4 is even or \[i is rational.

(7) Heis a lawyer only if he hasn't been disbarred. If's not the case that he has not been disbarred, Therefore he
is not a lawyer.
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Having explained the lexicon or grammar of the statement calculus, we will now concentrate on its semantics.

Semantics of the Statement Calculus

It is very important to observe that a logical form is never regarded as true or false. However, the logical form can
become true or false under an appropriate interpretation. That is, '

Definition: For a given logical form or formula, if we substitute the truth-values of statements for the statement
variables in this formula, in which the same truth-value of a statement always substitutes the same variable, the
resulting expression of truth-values is said to be an instance of the given formula. This resulting instance will have a
troth-value that only depends on the substituted truth-values and the connectives that bind them. The process of
assigning a truth-value to the given formula is called an jnterpretation of the given formula and will be defined by a
pumber of tabular forms, called truth tables. In this way, we will present the semantics of the statement calculus. In
general, we can assign arbitrary truth-values to the statement variables in question without going through the
intermediary statement. Given a formula A, 7(A) will denote an interpretation of A . Observe that the truth-value
of every statement is an instance of its logical form.

Before we proceed, consider the conditional formula 4 => B . Recall when the conditional statement 7{A) = 7(B)
is regarded as true. The statement J (A) is called the hypothesis/premise and the statement 7(B) is called the
conclusion/consequent of the conditional. Such a statement is considered true if it is not the case that 7(:A) is true
and 7(B) is false; otherwise, the conditional is false.

Definition: A truth table of a formula is a table of rows and columns headed by the component sub-formulas of the
given formula and followed last by the formula itself. In this table, each row exhibits the truth-values of one possible
interpretation of each sub-formula or formula while each column under each sub-formula or formula corresponds to
the truth-values of that sub-formula or formula for all possible interpretations. All the rows taken together exhibit all
the possible interpretations that can occur, the logical possibilities. Thus, each row is a possible world in which our
formula has been abstractly interpreted.

Let us begin by exhibiting the truth sables of all the basic connectives. That is, these truth tables constitute the
semantics of our basic connectives, hence that of the statement calculus.

Remark 1: In the following tables, “T7, read as “top”, is to be thought of as “true”, while “17, read as “bot”, is to be
thought of as “false”.

If A and B are arbitrary formulas, then

Truth Table Semantics of the Basic Connectives

A | A A B | AAB A | B | AVB
T L T, T T T T -
LT T 1L N N R

§?§§§T LT L Lol T
L] 4 L L 1 i
PR s



A B A =B A B A e B
T T T T T T
T L 1 T L L
L T T A T L
L 4 T L L T
Conditional Riconditional
Figure 7 Figure 8

The semantics of the above connectives as given in the above {ables were determined, as best we could, from the
corresponding way they are used in in our natural langnage, English here. Some correspond exactly while others
correspond poorly. Let 2 symbolize The Queen of Hearts made some taris and g symbolize Litile Boy Blue blew his
horn. Then,

—(Not): :

The table in Figure 4 corresponds exactly to the way “pot” is used in English. Thus, =g symbolizes the statement
The Queen of Hearts did not make some tarts and is false if and only if the statement The Queen of Hearts made some
tarts is true.

A (And):

The table in Figure 5 corresponds exactly to the way “and” or “but” is used in English. Thus, g A g symbolizes the
statement The Queen of Hearts made some tarts and Little Boy Blue blew his horn. This statement is true if both
component statements are true and false if at least one component statement is false.

v (Or): ‘

However, the semantics exhibited in the table of Figure 6 corresponds to the inclusive use of the conjunction “or” in
English. Thus, # V 4 symbolizes the statement T he Queen of Hearts made some tarts or Listle Boy Blue blew his
horn. This statement is true if at least one of the component statements is true or both of the component statements are
true.

= (If ...then .. ):
The semantics of the conditional exhibited in Figure 7 requires some explanation. These semantics correspond poorly
to the way this English conjunction is used. However, the first two rows of this table are exactly what we would
expect. What is the explanation of the last two rows? In general, whatever the interpretations of p and g we would
expect (p Ag ) = p to betrue since the consequent is part of the antecedent. Thus, if 7 were true and g, were false,
then (pAg)=p 15 “false=>true”, which would then be true. This is the third row. On the other hand, if p were
false and g whatever, then (pAg)=pis «“false=>False”, which would then be true. This is the last row.

& (If and only if):

The semantics of Figure 8 is easy 10 understand and corresponds to the English “if and only if”. Thus, p & 4
symbolizes the statement 7) he Queen of Hearts made some tarts if and only if Little Boy Blue blew his horn. This
statement is true if both component statements have the same truth-value and false if they differ.

The connectives “=", “V”, and “&” can be defined in terms of the connectives “—” and “A” . We will do this only
for the connectives “=” and “g? The reason we can do this will be seen later. Therefore,

Definition: A4 = B is defined to be ~(AA~(B)).

Definition: 4 <> B is defined to be (A = B) A(B = A) .
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Using the above semantics of our basic connectives, we may now construct a truth table of any formula.

Example 4: Construct a truth table of the formula ((# = ¢ ) A (—4) )= (=p) .

717 a =2 | —a|p=g|@=a)r-a | (g=a)r-a)=(Cp)
T 7T L 1 T L T
T L] L T i L T
L] T 7T 1 T L T
Ll LT T T T T
Figure 9

The tuple of truth values for the simple statements p, 4 in any row is referred to as a logical possibility. Notice how
the truth values of the final column, the original logical form, depends on the truth values of each of all the logical
possibilities. Thus, a truth table is a record of this dependency. From another point of view each logical form can be
considered to be a function from the domain of all its logical possibilities to the range {T,1}.

Example 5: Construct a truth table of the formula (p=g)N(g=p ).

p il g lp=qg |4=¢ (p=g)ANg=>p)

T T T T T

T A i T L

L T T 1 1

L)L T T T
Figurel)

Example 6: Construct a truth table of the formula —1(39 A (—uﬁ[,)) .

7 1| —~a |#2r-q | (pAr(=g)
T T i 1S T
T A T T A
i3 T i3 L T
L L T s T
Figure 11
Example 7: Construct a truth table of the formula gV —p .

Z 4 zV P

T L T

L T T

T L T

1 T T

Figure 12
Example 8: Construct a truth table of the formula p A (=) .

p |- | pACp)

T A L

1 T A

T L i

1 T L

Figure 13



Example 9: There is an alternate and more efficient way of presenting the truth table of a formula. This method is
also less prone to exror than the method already presented. Let us illustrate this alternative by constructing the truth
table of the formula given in example 4 again.

Most of mathematics is phrased in terms of A = B There are several idioms that have the same meaning as
“If A, then B .

e IfA, then B « B is anecessary condition for A
e A is a sufficient condition for B + ‘B provided that A

e BifA e IfnotB, then not A

s AonlyifB s A implies B

There are three types of logical forms (formulas).

Definition: A formula is a tautology if and only if the truth value of the formula is T for all its logical possibilities;
that is, the last column corresponding to its truth table consists of all T's.

For example, the formula gV g in example 7 is a tautology. For convenience, “T” will replace the sub-formula
p V —p inany formula containing this tautology.

Definition: A formula is a contradiction if and only if the truth value is 1 for all its logical possibilities; that is, the
last column corresponding to its truth table consists of all 1 's .

For exarmple, the formula g A ~p in example 8 is a contradiction. For convenience, “1” will replace the sub-formula
P A-p inany formula containing this contradiction.

Definition: A formula is a contingency if and only if it is neither a tautology nor a contradiction.
For example, the formula in example 6 is a contingency.

Exercise Set 2: Determine which of the following statements are tautological and which are contingent.

(1) The President of the U.S.A. is a man. (4) Some roses ar e_red. o )
(2) IfIlove you thenIlove you. (5) 1t will either rain or pot ramn m Hattiesburg on
(3) Either all students like logic or some students June 28, 2020. .

don’t like logic. {6) Some students are bored by logic.

In logic, we sometimes would like to replace one formula by an equivalent one. This idea is made precise in following
definition.

Definition: Two formulas A and B are logically equivalent if A < B is a tautology; that is, the last columns of the
truth table of each formula are identical. In this case, we will write A =B .

For example, the logical forms above in the truth tables of Figure 7 and Figure 11 are logically equivalent. This is the

3 [43 %

reason we can define the connective “_y 1n terms of the conmectives “— and “A” .



Exercise Set 3: Constract the truth table of each of the following logical forms.

1) (=) A (~a))

@ (@=>n=(=@=2))

@) (p=G=7)
@ (prgy=r)

®) ((p & Ca)vr)

©) (P r@)V (r19))

@ ((~#)na)

® (p=G@=>m)=>@=>a= CEY)

Exercise Set 4: Which of the following logical forms are tautologies?

M) =)=

@ (v = ()= a))

@ ((pr @)V (@A )V (A -2)))
@ (o= @=r)=(ErCD)Y )

Exercise Set 5: Show that the following formulas are tautologies.

L p=p

@) (p = (@@= )
@ p=>@rp)
@ prg=a)
5 pvhep
©) (P AT) & p)

7 ((p > q) & ((p A a) ”"’*))

® (pvDeT)

©) @p=aq) e (EPVae)
(10) (pAL) &L

1) (g =) ep

(i12) 1= p

(13) ~p =T

(14 (pVv (~p))e T

Exercise Set 6: Show the following are tautologies. These tautologies will play a central role in proving arguments
and theorems by deductive reasoning. Eventually, they will be used as rules of inference.

(a) Law of Addition (Add):
A= (AVB)

(b) Laws of Simplification (Sirap):

(AAB)= A
(AAB)=B

(¢) Disjunctive Syllogism {(DS):
((AVB)A (=A)) = B

(d) Law of Double Negation (DN):

(""l("IdQ)) = A

(¢) Cormutative Laws (Comy):
(AAB) e (BAA)
(AVB) = (BV A)

(f) Laws of Idempotency (Idemp):

(ANA) & A
(AVA) S A
(g) Contrapositive Law (Contrap):

(A = B) < ((=B) = (—eA))

(h) DeMorgan’s Laws (De M.):

(A A B) & (("mfl) v ("lB))
—{AV B) & ((-‘kﬂ) A ("’13))

(j) Distributive Laws (Dist):

(ANBVO) & ((AAB)V(ANC))
(AVBAL)) = ((AVB)/\(JLVC))

(k) Transitive Laws (Trans).
(A=>B)AB=C)=>A=C)

(A e BIA(B &)= (Ae0)

(1) Constructive Dilemmas (CD):
((A=BIAE=>D)) = ((AVEO) = (BVD))
((A=BIN(E= D)) = ((AAE) = (B AD))

(m) Destructive Dilemmas (DDY:

((A=BAE=D)= (B D)= (=AY -0)))

(A =B A=) = (((-BYA D)) = (=D A (+6)))
(n) Modus Ponens (MP):
((A=BYNA)=B
(o) Modus Tolens (MT):
((A=B)A (=B)) = —eA
(p) Contradiction (Cy:
(=A N cfl) e h
(q) Reductio ad Absurdum (RA):
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(i) Associative Laws (Assoc): (( AN (~B)) = _;_) e (A= B)
((ﬂAB)AG)@(ﬂ/\(ﬂB/\C‘?)) () L) & oA
((J{VB)VC) & (ﬂV(ﬂBVC))

Now that we know what a statement is, its syntax, semantics, and logical form, we can present the important concept
of an argument.

Arguments and Their Validity
Definition: An argument is a sequence of statements called the premises and a final statement called the conclusion.

An argument form is what you get after you replace cach statement in an argument with its logical form. More
precisely, we have

Definition: An argument form is a sequence of logical forms called the premises and a final logical form called the
conclusion.

We will represent an argument form as follows:

Py
Py
: or Py, Poy e PulC
P
C
Figure 15

Remark 2: Usually the word “therefore”, or sOme S$ynonym, or shorthand symbol as .. (read “therefore”), is written
or understood just before the conclusion. Therefore, the above line segment separating the premises from the
conclusion in Figure 15 will be understood to mean therefore.

Definition: An argument form is valid if it is impossible to have an interpretation of the given formulas in such a way
as to make each of the premises true and the conclusion false, Otherwise the argument form is invalid.

Remark 3: A mechanical way of determining if our argument form is valid is to determine if the formula
(PLAP, A AP =Clisa tautology. That is, construct a truth table of this formula and observe if there is a logical

possibility in which the premises are true and the conclusion is false.

Tn other words, an argument form is valid if the conclusion must be true in any world we can imagine in which the
premises are true. In this case, we also say,

Definition: The final logical form of a valid argument form is said to be a logical consequence of its preceding
premises.

Correspondingly,

Definition: An argament is valid if its corresponding argument form is valid. Otherwise the argument is invalid.
Definition: The final statement of a valid argument is said tobe a logical consequence of its preceding premises.
Yet us illustrate these ideas of validity in the following examples. In the following arguments,

Spiderman refers to the comic book superhero by that name.

Garfield refers to the conic book cat by that name.

Socrates refers to the ancient Greek philosopher by that name.
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Example 10: Consider the following argument,

If Spiderman is a superhero, then Spiderman battles evil.
Spiderman is a superhero.

. Spiderman battles evil.

What is the argument form of this argument? To see the answer, let g symbolize Spiderman is a superhero and g

symbolize Spiderman battles evil everywhere in our argument. Then the argument form of this argument is exhibited
in Figure 16a.

pla|lp=g|@32RNp (((:ﬁﬂ%)f\av)——#@)
T T T T T
=4 T L L L T
A LT T L T
LG 1] 1 T L T
Figure 16a Figure 16b

Notice, for this form, it i impossible for the premises to be true and the conclusion false under any interpretation. For,
if A, Bare interpretations of p,q ,respectively, with B false, then A must also be false in order to have A = B true.
So, the second premise cannot be true. Thus, whenever the premises A => B, A are true, the conclusion B must also be
true. In particular, whenever the premises about Spiderman are trne, the conclusion about Spiderman must also be
true. In fact, in this example, both the premises and conclusion of the argument are true, Thus, our argument is valid.

This can also be seen from the truth table in Figure 16b of the formula ((;p = g)A ga) = g , since this formula is a
tautology (refer to remark 3 above).

Example 11: Consider next the argument,

If all fruit are seedless, then some fruit is seedless.
All fruit are seedless.

. Some fruit is seedless.

What is the logical form of this argument? To see this, we let p symbolize All fruit are seedless and ¢, symbolize
Some fruit is seedless, everywhere in our argument. Then the argument form of this argument is the same as the
previous one exhibited in Figure 16a above.

As before, no interpretation of this form can render the premises true and the conclusion false. In particular, whenever
the premises about fruit are true, the conclusion about fruit must also be true. In fact, in this example, the second
premise is false and conclusion is true. However, this argument is still valid.

Example 12: Consider next the argument,

If Socrates is a myth, then Socrates is a Greek god.
Socrates is a myth.

- Socrates is a Greek god.

What is the form of this argument? We begin, as before, by first lefting # symbolize Socrates is a myth and g
symbolize Socrates is @ Greek god, everywhere in our argament. Then the argument form of this argument is the
same as the previous one exhibited in Figure 16a above.

As before, no interpretation of this form can render the premises true and the conclusion false. For, if 4,Bare

interpretations of 2, 4, respectively, with A = B and A4 true, then B must also be true in order to maintain A = B
true. So, the conclusion must be true. Therefore, whenever the premises A = B, A are true, the conclusion B must be
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true. Here, whenever the premises about Socrates are true, the conclusion about Socrates must also be true. In fact, in
this example, the second premise is false and conclusion is also false. But the argument is still valid.

Example 13: Now, consider the argumernt,

If President Lincoln was assassinated, then President Lincoln was murdered.
President Lincoln was murdered.

. President Li_ncoln was assassinated.

What is the form of this argument? We begin, as before, by letting 2 symbolize President Lincoln was assassinated
and g symbolize President Lincoln was murdered, everywhere in our argument. Then the argument form of this
argument is given in 17a.

T o poal woanre| (@=ara)=7)
Tir | o7 T T
Py =49
f T 1 L T
: T T T 1
¥ L 7 1 T
Figure 172 Figure 17b

In this example about President Lincoln, even though both the premises and the conclusion are true, notice, for this
form, it is possible for the premises to be true and the conclusion false under some interpretation. For, if 4, Bare

interpretations of 2,4 , respectively, with 4 false and B true, then A = B must also be true. So, the premises A =
B, B would be true and the conclusion 4 would be false. An example of an invalid interpretation of the argument
form in Figure 17a is given in the next example about Garfield.

Example 14:

If Garfield is a dog, then Garfield is a cat.
Garfield is cat.
. Garfield is a dog.

Thus, the arguments of example 13 and example 14 are invalid. This can also be seen from the truth table in Figure
17b of the formula ((# = g) A 4) = g , since this formula is not 2 tautology (refer to remark 3 above).

n summary, arguments in examples 10-12 all have the same form shown in Figure 18 below while arguments in
examples 12-13 have the form shown in Figure 19 below. Notice that, for the argument form shown in Figure 18, it is
not possible for the premises to be true and the conclusion false while, for the argument form shown in Figure 19, it is
possible for the premises 10 be true and the conclusion false. In the former case, the argument form is valid while in
the latter case, the argument form is invalid®.

Argument Forms
pr=4% p=4q
# %
oo q Lo
Valid Invalid
Figure 18 Figure 19

2 The valid form shown in Figure 18 is called Modus Porens (MP)} while the invalid form shown in Figure 19 illustrates the
Converse Error.
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In the above examples, arguments in examples 10-12 are instances of the argument form shown in Figure 18 while
arguments in example 13-14 are instances of the argument form shown in Figure 19. In the argument of example 10,
the statement Spiderman battles evil is a logical consequence of its premises. Also, in this argument, we say that the
argument is sound while in arguments of examples 13-14 we say that these arguinents are unsound. That is,

Definition: A sound argument is a valid argument with true premises. Otherwise, we say that the argument is
unsound.

TImportant: Arguments are never described as true or false but as valid, invalid, sound or unsound while statements
are described as true or false.

For the most patt, logicians are not imterested in the soundness of an argument. That is, they are not interested in
determining the truth or falsity of the premises of arguments. This is usually an empirical matter io be decided by
observing how things operate in the world. Logicians are more concerned with the internal structure of arguments as
represented by their forms and the question of whether the conclusion is a logical consequence of its premises.
However, to determine this 1o gical consequence, we must consider the possible interpretations of the premises and
conclusion of the argument.

There is another important concept that can shed more light on the concept of validity. Let Py, Py, ., PolC be an
invalid argument form. Then, there exists an interpretation J(Py),J (P, ., TP, I(€) such that the

premises 7(Py1), 7 (P, ..., I(Fy) are true and the conclusion 7(C) is false. Therefore, each of the statements

(P I(P2), s T (P, ~I(€) is true. In this case, we say the latter collection of statements is consistent. On the
other hand, if the argument form is valid and 7(P), 1(P2), -, 7 (P,), 7(C)is any interpretation, the conclasion 7(C)
srust be a logical consequence of its premises. This means that, whenever the premises J (P, I(P2), ..., T(Pp) are
true, the conclusion J(C) must also be true. Therefore, all of the statements (P TP, . T (P,), ~I(€C) can pever
be true. In this case, we say the latter collection of statements is inconsistent. In summary,

Pefinition: A collection of statements is said to be consistent if they are all true and inconsistent otherwise.
As for formulas, we have

Definition: A collection of formulas is said to be consistent if there is an interpretation that is consistent and
inconsistent if no such interpretation exists.

As a result, we observe the following important relationship.

Important: Thus, a collection of formulas Ay, Az, v A, An is consistent if the corresponding argument form
Ay, Az, s An—1lefln is invalid. On the other hand, the collection is inconsistent if the corresponding argument
foml CA“"I.’ cﬂz, aney L”Jq--n__.'li _kﬂ-n iS Va}id.

As an example, consider the collection of formulas p = 4, 4. # - Is this collection consistent o1 inconsistent?
Suppose it were consistent. Therefore, there would then be an interpretation of this collection in which the
corresponding statements would all be true. This would imply that g would become false and p would become true.
But thus would further imply that 7 = 4 would become false. This cannot oceur. Therefore, our collection must be
inconsistent. This implies that the argument form shown in Figure 20 is valid. As another example, consider the
collection of formulas # = ¢, ¢, 4 - Is this collection consistent? Yes, it is. To see this, choose any instance of 2
that is Talse and any instance of ¢ that is true. Then, both - and 2 = ¢ obviously interpret to true. Thus, our
collection is consistent. This implies that the argument form shown in Figure 21 is invalid®.

Argument Forms
p =g, F p=>q,p 4
Valid Invalid
Figure 20 Figure 21

3 The valid form shown in Figure 90 is called Modus Tolens (MT) while the invalid form shown in Figure 21 illustrates the
Inverse Error.
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We have seen that in order t0 determine if an argument form is valid, we must analyze the different interpretations of
the argument form. In order to do this, we can exhibit our analysis in a truth table. Let us now give a significant
example that illustrates this idea. Determine whether the following argument 13 valid or not.

Example 15:
If there are no government subsidies of agriculture, then there are government
controls of agriculture. If there are government controls of agriculture, there is
no agricultural depression. There is either an ogricultural depression oF

overpreduction. 4s a matter of fact, there is no overproduction. Therefore, there
~ are government subsidies of agriculture.

In order to determine the argument form of this argument, we must first determine the simple statements of our
argument and symbolize cach with an appropriate variable. We will name a variable with the first letter of each
underlined word as a mnemonic for the simple statement that contains that word. For example, the variable .5 will
symbolize the statement There are government subsidies of agriculture. After these symbolizations, we obtain the

argament form and its corresponding formula in Figuore 22.

& = C

¢ = d

ave ((—15wc)A(c:‘)ﬂd)/\(dVo')/\(—:cr)):#5
=

o8

Figure 22

The argument in example 15 is valid if the formula in Figure 22 is a tautology. The truth table of this formula is given
in Figure 23.

Truth Table of ((ms =) A(c=—d)A(dV o)A (m0)) = &

Thus, the truth table shows that the formula is a tautology and so the argument is valid.
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Exercise Set 7: Show that the following arguments / argument forms are valid.

&3] phg)y=rip=@=>7)

(2) If twenty-five divisions are enough, then the general will win the battle. Either
 three wings of tactical air support will be provided, or the general will not win
the battle. Also, it is not the case that twenty-five divisions are enough and

that three wings of tactical air Support will be provided. Therefore, twenty-five

divisions are not enough.

(3) If Aristides wins, then either Northern Dancer or Citation will place. If
Northern Dancer places, then Aristides will not win. If Secretariat places, then
Citation will not. Therefore, if Aristides wins, Secretariat will not place,

(4) Either logic is difficult or not many students like it. If mathematics is easy,
then logic is not difficult. Therefore, if many students like logic, then
mathematics is not easy.

(5) If prices are high, then wages are high. Prices are high or there are price
controls. Also, if there are price controls, then there is no inflation. However,
there is inflation. Therefore, wages are high.

(6) This baby is illogical. If this baby can manage d crocodile, then it is not
despised. If this baby is illogical, then it is despised. Therefore, this
baby cannot manage o crocodile.

(7) If Rudy is a duck it will decline to waltz. If Rudy is an officer, then he
does not decline to waltz. If Rudy is a chicken, then it is a duck.
Therefore, if Rudy is a chicken, then it is not an officer.

(8) If this mango is not ripe, then it is not wholesome. If this mango was grown by
farmer Brown, then it is wholesome. If this mango was grown in the shade,
then it is unripe. Therefore, if this mango was grown in the shade, then it was

not grown by farmer Brown.

(9) If he studies medicine, then he prepares 10 ¢arn & good living. If he studies the

arts, then he prepares 10 live a good life. If he prepares to earn a good living

or he prepares to live a good life, then his college tuition is not wasted. His
college tuition is wasted. Therefore, he studies neither medicine nor the arts.

(10) Either Winston is elected president of the board or both Hilbert and Luke are
elected vice presidents of the board. If either Winston is elected president or
Hilbert is elected vice president of the board, then David will file a protest.
Therefore, either Winston is elected president of the board or David files a
protest. :

The previous method demonstrating that an argument is valid was tedious and prone to error. it required sixteen rows
and eighteen columns. An argument involving n statement variables would require 2" rOws and, probably, many
columns. Therefore, a more efficient method of demonstrating an argument valid would be much appreciated. There
is such a method, a method that mathematicians employ every day in their professional work. A method based on
rules of inference and deductive reasoning, namely, the concept of proof. We now turn to these powerful ideas.

Proofs and Deductive Reasoning
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A mathematical theory can be consider
of investigation from previously know
domain called axioms of the domain.
certain rules that we must follow to obtain

ed 10 be a game in which we attempt to discover new “truths™ about a domain
“truths” of the domain. The starting point consists of initial “¢ruths”™ about our
Each axiom or new truth is also said to be a theorem. As in any game, there are
new theorems from old theorems. These rules are called the rules of

inference. The application of our rules of inference In proving theorems is the engine of the process called deductive

yeasoning.

For example, to prove the formula A = B, we must exhibit a chain of premises, axiors, definitions or previously

proved theorems starting at A and terminating at B using our rules of inference. This 1s made more precise in the

following definition.

Definition: A formal deductive proof or de
is a sequence of formulas Ay, Az,
either a premise Py, an axiom, a theoren’,

ductive proof or, simply, 2 proof of the argument form Py, Pys s PulC
A, C in which each formula Ay, 1 <k sm,or & in the sequence 18
a definition or follows from some preceding formulas in the sequence by

an application of a rule of inference. In this case we write, {Py, Py, P} C and say that € is deducible from

{P1, Pz, i Pn} -

‘What should we use as our rules of inference? For a rule of inference, the most important criteria is that itbe
impossible to deduce a conclusion that is false from premises that are true. Our rules of inference will take the form of
a valid argument. In fact, among others, all tautologies can be used as such rules of inference. Therefore, we will

begin by using the tautologies on pages

9 and 10 from (a)-(q) as our rules of inference, among others. We have also

added others; namely, items (c), and (s)-(W). Thus,

(2) Law of Addition (Addy:
AlAVB

(b) Laws of Simplification (Simp):

A NBlA
A ANB|B

(¢) Law of Conjunction (Cong):
A, BijA AB®

(@) Disjunctive Syllogism (DS):
(AVB)A(~A)B

(¢) Law of Double Negation (DN}):

(A A

(f) Commutative Laws (Comy):
ANBIBAA
AVBIBVA

(g) Laws of Idempotency (Idemp):

A NA|A
AV AlA
(h) Contrapositive Law (Contrap):
(i) DeMorgan’s Laws (De M.):
(A NBH(=A) V {(~B)
(A VB (A A (—~B)
(j) Associative Laws (Assoc):

(A /\fB)/\CHcﬂ./\CB/\C’)
(AVB)VCHAV(‘BVC)

* A theorem can be thought of as a valid arguament.

Rules of Inference

(m) Constructive Dilemmas (CD):
(A=>B)ANC = D)(AVE) = (B v D)
(A= BYA(C = DI(ANC) = (B AD)
(n) Destructive Dilemmas (DD):
(A= BYAE = DI((=BIV (=D)) = ((=A)V (=€)
(A=>BINC= DI(=BI A (—D)) = (D) A (—C))
(o) Modus Ponens (MP):
(A = B)NA|B
(p) Modus Tolens MT):
(A= BY A (-B)|~A
(g) Contradiction (&)
A NA ] L
(r) Reductio ad Absurdum (R.AL):
(A A (-B)) =1 ||A=B
(ﬂcﬂ.) =1 ”cﬂ
(s) Deduction Theorem (DT): Let T be a collection of formulas.
TU{AYFBIIFrFA=B
(t) Universal Tnstantiation (UL):
(vx € U)A)|Ala), where a can be any member of U
(u) Existential Instantiation (ED):
(dx € ) A(x)|A(a), where a is some member of U
not already in use.
(v) Existential Generalization (EG):
A(a)(3x € U)A(x), where ¢ 18 somne member of U

5 A formula can be thought of an argument form with no premises. A theorem is a formula that is deducible from the empty st of
formulas (has a proof). In general, a theorem is a previously proved argument / argument form.
§ The symbol ‘|| here means we have two rules of inference: A, B |AABand ANB A, B



(k) Distributive Laws (Dist): (w) Universal Generalization (UG):
AN(BYONNAN BYV (AAC) Ala)|(vx € NA(x), where a is an arbitrary member of
rﬂ.V('B/\C)H(rﬂVfB)/\(J-lVC) U
() Transitive Laws (Trans):
(ﬂﬁiB)/\(‘Bréﬁ)[ﬂ:}C
(ﬂ@B)A(‘B@C)[CAmc

Figure 24
One of the most famous rules of inference is modus tolens, item (p) of Figure 24, How would this rule be used? Since it

is impossible to have both A = B, ~B true and =A false, in any proof, if it contains the formulas A = B and —B, the
formmula —cA may be asserted as the next step. As an example of doing such a proof, we will redo example 14 above.

Example 16: Prove the theorem {(—8 = ¢) A (c= —d)A(dV o)A (—-gcr)) = 5.

Deductive Steps Reasons
1.m8=¢C 1;Hyp «—Hypothesis
2.¢ = ~d 2;Hyp «Hypothesis

3-Hyp < Hypothesis
4:Hyp <« Hypothesis
3:Com ¢item (D
4,5;DS  «item (d)
6;DN  «item (e)

[2,7,MT «item (p)

| 1L8;MT «item (p)

| 9.DN__ «item (e)
Figure 25

The proof consists of two columns labeled “Deductive Steps™ and “Reasons”. The column headed “Deductive Steps”
consists of the steps i our proof, from hypotheses to conclusion. In this example, the column headed “Reasons”
consists of only applications of the rules of inference to the deductive steps. For example, in step 6, d is asserted as a
deductive step of the proof and in the corresponding columa of reasons, the rule of inference “Disjunctive Syllogism”
is applied to steps 4 and 5 to obtain the deductive step 6. All this, is abbreviated as «4 5: DS”. Some deductive steps
are so obvious that, in the future, they will not be explicitly written in our proof but just used. For example, the
commutative laws will be used in the future without being explicitly written as was done in step 5 in our proof.

In general, comumentary such as “step «-item (x)” is not part of the proof. It is provided here this time only so that you
can easily locate the rule of inference used in the list of the rules of inferences. It will not be supplied any more.

Remark 4: There are two major types of proofs. It depends on whether or not the proof uses the rule of inference
«Reductio ad Absurdum (RAY”, item (g) in. Figure 24. This rule of inference is also called “Proof by Contradiction”.
If the proof does not use this rule, then the proof is said to be done directly; otherwise, it is said to be done indirectly.
Examples 17 and 18 illustrate these two different methods of proof.

Example 17: Prove the theorem ((;p vg)A(—gV 4”)) = (p Vv ) directly.

[— Deductive Steps B Reasons j
17




1.pV4g 1;Hyp
2. g VT 2:Hyp
3. =gV —1(”1'?’) 2;DN
4. (g A () 3;DeM
5.9 =% 4;Def of “="
6. ~(~p) Y (~49) 1:DN
7. "'l(('—lgﬂ) A ("1@)) ‘ G,DGM
8. —w=4 7:Def of “=”
9, —p =1 8,5, Trans |
10. -1((—13'9) A (—14")) 9;D3f0f “=”
11. —1("’1;3) V =1(=77) 10;DeM
|12, pV¥ 11:DN
Figure 26

We will redo example 16 using proof by contradiction.

Exanple 18: Prove the theorem ((pva)r(-gV )= @Vvr) indirectly.

This means we must prove the theorem ((39 % 4))‘\ (=g V7N (=(pV 4‘"))) =4

Deductive Steps Reasons

l.pVg 1; Hyp

2, g VA 2, Hyp

3. =(pVr) 3: Hyp

4, —wp A F 3; DeM

5, P 4; Simp

6. =t 4; Simp

7.4 1,5.; DS

8. —(—g) 7, DN

Q, 4 2.8, DS

10, =" A ¥ 9.6; Conj
11,4 10,C B

Figure 27

Exercise Set 8: Prove the theorems in exercise set 7 using the rules of inference.

The rules of inference from (s)-(w) involve what are called quantifiers. This brings us to the Predicate Calculus. All
the examples we have exhibited above have been concerned with the formal structure of arguments only in so far as it
can be expressed by our representation of simple statements such as “gnow is white” and compound statements
composed of one or More simple statements with one or more connectives. We use symbols like p and g to represent
simple statements 50 We Call determine general features of statements and arguments as consistency and validity. We

can use truth tables in many cases to do this. However, consider the form of the following argument.

All cats are mammals
Molly is a cat

Molly is a mammal

Because the statements €Xpres sed in the premises and conclusion are all simple, we have to represent the argument as
p,g }+ . This argument is intuitively valid but the stalement calculus has no process by which the conclusion can be
dertved from the premises. This ocours because this argument has internal structure the statement catculus cannot
handle. Tn order to represent this internal structure of statements, We must use the concepts of the Predicate Calculus.

18



Quantification Theory of the Predicate Calculus

In the discussions of any endeavor, such as scientific studies, we are always asserting that certain individuals from a
certain collection have a certain property. For example,

(a) Some lions are gentle.
(b) All birds cannot fiy.

(c) Allreal numbers have a non-negative square.

Tn (2), the collection of interest is that of all lions and the asserted property’ is “being gentle”.
Tn (b), the collection of interest is that of all birds and the asserted property is “heing able to fly”.

In (), the collection of interest is that of all reals R and the asserted propeity is “having a non-negative square root”.

We now wish to develop a formalism that will help us reason logically about these assertions. The collection-of
interest is called the domain of discourse or universe, denoted by US

If x € U, and P is some property of interest abdut x , then asserting P(x), called a statement predicate, is to assert
“the individual denoted by x € 14 has property P

Two very important assertions are built from P (x) and these two phrases are: “here exist an x in U7 and “for all xinU”.
They are,
(a) “There exist an X in U such that P (x) holds”™

(b) “Forall xin U, P(x) holds”

Statemment (a) is symbolized by
(3x € U)YP{(x) or #HA)x e UA P())

This is an existential quantified gtatement and (E]x) or (3x € U) is called an existential quantifier.

Statement (b) is symbolized by

(vx e U)P(x)or (vx)(xelU= P(x))
This is a universally quantified statement and (Vx € U ) or (vx) is called the universal quantifier.
Example 19: Formalize the statement: Some lions are gentle. This statement ;s an existentially quantified staterent.
Here, x € U if and only if “x is a Hon”. Also, G(x) holds if and only if “x is gentle”. Therefore, the formalized
staternent is (Ax)(x € UA G{x)) . ‘
Example 20: Formalize the statement: All veal numbers have a non-negative SGUAare. This statement is a universally

quantified statement. Here, U = K. Also, P(x) holds if and onlyif x2=0. Therefore, the formalized statement is
vx)(xeR=>x*20).

7 The asserted property is also called a predicate.
8 A collection or set is an undefined concept that represents our intuitive understanding of the grouping together of designated
elements or members. It is a many that is a one. So,if X isa member of U, we write X € U.
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Eyercise Set 9: Formalize the following statements using quantifiers.

oo AR

10.
11
12.
13
14.
15.
16.
17.
18.
19.
20.

Some integer is larger than 23,

A positive integer is not negative,

No natural number is less than 0.

No positive integes i less than 1

No prime s number is srnaller than 2.

The product of two positive integers is positive.

The product of two negative integers is positive.

The product of a positive and a negative integer is negative.

The sum of two even integers is even.

Every even integer is twice some integer.

Ever odd integer is one more than twice some integer.

The squate of an even integer 1s evern.

The square root of an even squared integer 1s even.

The square of an odd integer is odd.

The square root of an odd squared integer is odd.

The square Toot of 2 positive real mumber less than 1 is larger than the number.
The square root of a positive real number greater than 173 less than the number.
The square root of & positive real number is positive.

The square root of & negative real number is not a real number.

The square root of a negative real number is the product of i and the square root of the absolute value of the
mumber.

Exercise Set 10: Formalize the following statements using quantifiers.

CE NSt e

10.
1l
12.
13.
14.
15.
16.
17.
18.

For every nonzero real nurnber there exists a nonzero real number such that the product is 1.
There exists a nonzero real aumber for every nonzero real number such that the product is 1.
Between every pair of distinct rational numbers there is some rational number.

Retween every pair of distinct rational numbers there 1s some irrational number.

Between every pair of distinct real numbers there is a rational number and an irrational number.
Every positive integer greater than two can be written as the sum of two primes.

You can fool some of the people all the time.

You can fool ail the people some of the time.

You can’t fool all the people all the time.

You can’t fool some person all the time.

Everybody likes somebody.

Somebody likes somebody.

Everybody likes everybody.

Somebody likes everybody.

Nobody likes everybody.

Somebody likes nobody.

“There are exactly two purple mushrooms.

The barber shaves all those and only those who do not shave themselves.

Rules of Quantifier Negation:

——I(Vx eU )?(JC) g (Bx U )('—1?(35))

ﬂGxEUJ?&)@(VxEU)@ﬂKﬂ)

Exercise Sef 11z

(1) Use quantifiers to determine which of the following is logically equivalent to the negation of the statement

« A1} snakes are poisonous”? What is the universal set?
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(a) All snakes are not poisonous.
(b) Some snakes are poisonous.
(c) Some snakes are not Poisonous.

(2) Find the statements that are logically equivalent to the negation of each of the following statements by first

cxpressing each as a quantified formula and then taking the negation.
(a) All snakes are reptiles.
(b) Some horses are gentle.
(c) All female students are either attractive or smart.
(d) No baby is not cute.
(e) No elephant can fly.
More Material

21



. A detective established that one person in a gang comprised of 4 members 4,B,C and D killed a

person named E. The detective obtained the following statements from the gang members (S
denotes the statement made by 4. Likewise for Sz, Scand Sp)

@

Sy Bkilled E.

(i)

Sg: C was shooting craps with 4 when E was knocked off.
(iif)

Sc: Bdidn'tkill £,

(v)

Sp:  Cdidn'tkill E.

The detective was then able to conclude that all but one were lying. Can you decide who killed E7

Solution Let (1)—(4) to be given Jater on be 4 statements. The 1st two, (1) and (2) below, are frue
due to the detective's work.

OF

Only one of the statements S4 Sp, Sc, Sp. 1s true
2):
One of 4, B, C and D killed E.

From the (content of the) statements S and S¢ we know

3
S, —+Sp is true because if Sy is frue, then B killed £ which implies C didn't kill E due to (2), implying
Sp is also true.

and from (1)

(4):

SA "—}'NSB ANSC MSD 18 true.

Let us examine the following sequence of statements.

(a) Sa—¥Sp S true implies Sptrue, i.e. (54, ~.Sp) (from (3))
(D) St —HreSE AAmeSC AaSp S true implies Sp, Scand Spall false (from (4))
() meSB ArnaSC AnaSD ~3.Sp conjunctive simplification (direct)

(d) Sa—+~SD hypothetical syllogism (from (b), (c))
(€) ~eSp—H~nSa modus tollens (from (2))
(f) Ss—roS4 hypothetical syllogism (from (d), (&)

We note all the statements on the sequence apart from the first two (a) and (b) are obtained from
their previous statements OF form the valid argument forms. However the first 2 statements (a) and
(b) are both true hence the conclusion in (f) is also true. A statement sequence of this type 18
sometimes called a proof sequence with the last entry called a theorem. The whole sequence is
called the proof of the theorem.
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Alternatively sequence (a)--(f) can also be regarded as a valid argument form in which a special
feature is that the truth of the first 2 statements will ensure that all the premises there are true.

From (3) and (4) and (a)--(f) we conclude Sy —+eS, is true. Hence Sy must be false from the rule of
contradiction (if S4 were true then ~S4 would be true, implying Sa is false: contradiction).

From the definition of Sc we see ~:S4 —+Sc. From the modus popens
ra A ‘_}SC, NS/I, -'-SC
we conclude Sc is true. Since (1) gives
SC “'}"NSA lﬁENSB ANSD )
we obtain from the (conjunctive simplification) argument
SC —+NSA AMSB P\NSD, NSA ANSB JA‘INSD "”’}NSD, .'.SC ""‘“}NSD
that Sc~*~sSp. Finally from modus ponens (Sc—3naSp, SC, arwSD) , WE conclude ~.Sp is true, that is,
C Xilled F. We note that in the above example, we have deliberately disintegreted our argument into
smaller pieces with mathematical symbolisation. It turns out that verbal arguments in this case are
much more concise. For a good comparison, we pive below an alternative solution.
. Re-do the previous gestion more directly.
Solution (alternative for example 6) Suppose A wasn't lying, then A's statement B killed £ is true.
Since 4 spoke the truth means B,C and D would be lying, hence the statement C didn't kill E said by
D would be false, implying C did kill E. But thisis a contradiction to the assumption 4 spoke the

truth. Hence 4 was lying, which means B didn't kill E, which in turn implies C spoke the truth. Since
only one person was not lying, 1) must have lied. Hence Cdidn't kill E is false. Hence C killed E.
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