

Topology Qualifying Exam

August 2016

Do exactly five of the following problems. In order to obtain credit you must show all your work. The passing grade at the M.S. level is 2/3 and at the Ph.D. level is 3/4.

Problem 1. (20 points) A topological space X is called *locally Euclidean* if for any $x \in X$, there is an open neighborhood U_x which is homeomorphic to the Euclidean space \mathbb{R}^n . Prove that if X is a connected locally Euclidean space, then X is path connected.

Problem 2. (20 points) Prove the following result directly (without using any theorem from covering spaces). Let $f: [0,1] \to S^1 = \{z \in \mathbb{C}; |z| = 1\}$ be a continuous function with f(0) = 1. Then there is a unique continuous function $\tilde{f}: [0,1] \to \mathbb{R}$ such that $\tilde{f}(0) = 0$ and $f(t) = e^{i\tilde{f}(t)}$.

Problem 3. (20 points) Suppose that X is a compact metric space, and $\bigcup_{i=1}^{n} U_i$ is a finite open cover of X. Prove that there exist n open subsets $\{V_i\}_{i=1}^{n}$ such that $V_i \subset \overline{V_i} \subset U_i$ and $\bigcup_{i=1}^{n} V_i$ is also an open cover of X.

Problem 4. Let X = [-1, 1] and $\mathscr{T} = \{U \in \mathscr{P}(X) \mid 0 \notin U \text{ or } (-1, 1) \subseteq U\}.$

- (i) (6 points) Show that (X, \mathscr{T}) is a topological space.
- (ii) (7 points) Show that (X, \mathscr{T}) is not Hausdorff.
- (iii) (7 points) Show that (X, \mathscr{T}) is first countable.

Problem 5. Let $(\mathbb{R}, \mathscr{T}_0)$ be the usual euclidean space. Define a new topology on \mathbb{R} by letting $\mathscr{T}_1 = \{U \in \mathscr{P}(\mathbb{R}) \mid U = \varnothing \text{ or } \mathbb{R} - U \text{ is compact in } (\mathbb{R}, \mathscr{T}_0)\}$

- (i) (4 points) Show that $\mathscr{T}_1 \subseteq \mathscr{T}_0$.
- (ii) (8 points) Show that $(\mathbb{R}, \mathscr{T}_1)$ is compact.
- (iii) (8 points) Show that $(\mathbb{R}, \mathscr{T}_1)$ is separable.

Problem 6. (20 points) Let $f : (X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$ be a function between compact Hausdorff spaces. Let

$$G_f = \{(x, y) \in X \times Y \mid y = f(x)\},\$$

be the graph of f. Show that if G_f is closed in $X \times Y$, then f is continuous.

Problem 7. (20 points) Let (X, \mathcal{T}_X) be a path-connected topological space. Show that $Y = \prod_{n=1}^{\infty} X_n$ where $X_n = X$ for all n, with the product topology, is also path-connected.