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Topology Qualifying Exam January 2014

Do exactly five of the following problems. In order to obtain credit you must show all your work.

Problem 1. Let U be a connected open set in Rn. Then any two points in U can be connected by
a curve. Define dist(p, q) to be the infimum of the lengths of all such curves joining points p and q

in U . It can be shown that dist is a metric on U .

(i) (10 points) Show that “dist” defines the same topology as D, where D is the usual metric on
Rn.

(ii) (10 points) Show that D = dist if and only if the closure of U is convex.

Problem 2. (20 points) Suppose (X,T ) is a topological space where the set X is countable and
the topology T is Hausdorff. Suppose further that each point of X is a limit point of X. Show
that (X,T ) cannot be compact.

Problem 3. (20 points) In this problem, we define a topology for the set R that is different
from the usual topology. For each x ∈ R, and each real number ǫ > 0, let V (x, ǫ) = {x} ∪
{q ∈ Q : ‖x− q‖ < ǫ}. Let B = the set of all V (x, ǫ), i.e. B = {V (x, ǫ) : x ∈ R, ǫ > 0}. The set B
is a basis for a topology, T , on R. Show that T is strictly finer than the standard topology on R.

Problem 4. (20 points) Let Y =
{

(x, y) ∈ R2|(x, y) 6∈ Q×Q
}

. Prove that Y is connected.

Problem 5. Define f : (R,Tl) → (R,TE1) by f(x) = x, ∀x ∈ R. Recall, Tl is the lower limit
topology over R generated by the basis B = {[a, b) | a, b ∈ R, a < b}.

(i) (6 points) Show that f is continuous.

(ii) (7 points) Find a set A ⊆ R with f(A) 6= f(A).

(iii) (7 points) Find a set B ⊆ R with f−1(B) 6= f−1(B).
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Problem 6. Let (X1,T1) and (X2,T2) be topological spaces and suppose X1×X2 has the product
topology. For each i = 1, 2 let Ai ⊆ Xi. Prove that:

(i) (10 points) A1 ×A2 = A1 ×A2.

(ii) (10 points) int (A1 ×A2) = int (A1)× int (A2).

Problem 7. Let f, g : (X,TX) → (Y,TY ) be continuous functions, where (X,TX) is an arbitrary
topological space and (Y,TY ) is a Hausdorff space.

(i) (10 points) Define A = {x ∈ X : f(x) = g(x)}. Show that A is closed.

(ii) (10 points) Suppose that B ⊆ X is non empty such that f(b) = g(b) for all b ∈ B. Show that
f(x) = g(x) for all x ∈ B.
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