

Topology Qualifying Exam

January 2014

Do exactly five of the following problems. In order to obtain credit you must show all your work.

Problem 1. Let U be a connected open set in \mathbb{R}^n . Then any two points in U can be connected by a curve. Define dist(p,q) to be the infimum of the lengths of all such curves joining points p and q in U. It can be shown that dist is a metric on U.

- (i) (10 points) Show that "dist" defines the same topology as D, where D is the usual metric on \mathbb{R}^n .
- (ii) (10 points) Show that D = dist if and only if the closure of U is convex.

Problem 2. (20 points) Suppose (X, \mathcal{T}) is a topological space where the set X is countable and the topology \mathcal{T} is Hausdorff. Suppose further that each point of X is a limit point of X. Show that (X, \mathcal{T}) cannot be compact.

Problem 3. (20 points) In this problem, we define a topology for the set \mathbb{R} that is different from the usual topology. For each $x \in \mathbb{R}$, and each real number $\epsilon > 0$, let $V(x, \epsilon) = \{x\} \cup \{q \in \mathbb{Q} : ||x - q|| < \epsilon\}$. Let B = the set of all $V(x, \epsilon)$, i.e. $B = \{V(x, \epsilon) : x \in \mathbb{R}, \epsilon > 0\}$. The set B is a basis for a topology, \mathcal{T} , on \mathbb{R} . Show that \mathcal{T} is strictly finer than the standard topology on \mathbb{R} .

Problem 4. (20 points) Let $Y = \{(x, y) \in \mathbb{R}^2 | (x, y) \notin \mathbb{Q} \times \mathbb{Q}\}$. Prove that Y is connected.

Problem 5. Define $f : (\mathbb{R}, \mathcal{T}_l) \to (\mathbb{R}, \mathcal{T}_{\mathcal{E}^1})$ by $f(x) = x, \forall x \in \mathbb{R}$. Recall, \mathcal{T}_l is the lower limit topology over \mathbb{R} generated by the basis $\mathfrak{B} = \{[a, b) \mid a, b \in \mathbb{R}, a < b\}$.

- (i) (6 points) Show that f is continuous.
- (ii) (7 points) Find a set $A \subseteq \mathbb{R}$ with $f(\overline{A}) \neq \overline{f(A)}$.
- (iii) (7 points) Find a set $B \subseteq \mathbb{R}$ with $\overline{f^{-1}(B)} \neq f^{-1}(\overline{B})$.

Problem 6. Let (X_1, \mathcal{T}_1) and (X_2, \mathcal{T}_2) be topological spaces and suppose $X_1 \times X_2$ has the product topology. For each i = 1, 2 let $A_i \subseteq X_i$. Prove that:

- (i) (10 points) $\overline{A_1 \times A_2} = \overline{A_1} \times \overline{A_2}$.
- (ii) (10 points) $int(A_1 \times A_2) = int(A_1) \times int(A_2)$.

Problem 7. Let $f, g: (X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$ be continuous functions, where (X, \mathcal{T}_X) is an arbitrary topological space and (Y, \mathcal{T}_Y) is a Hausdorff space.

- (i) (10 points) Define $A = \{x \in X : f(x) = g(x)\}$. Show that A is closed.
- (ii) (10 points) Suppose that $B \subseteq X$ is non empty such that f(b) = g(b) for all $b \in B$. Show that f(x) = g(x) for all $x \in \overline{B}$.