Departamento de Matemáticas

Facultad de Ciencias Naturales Recinto de Río Piedras

PhD Qualifying Exam: Analysis

3 hours

February 11, 2008

You may solve all six (6) Problems but only the best five (5) solutions will be counted as your grade.

1. Let f_n be a sequence of nonnegative measurable functions on [0, 1]. Suppose that f is a Lebesgue integrable function with $f_n(x) \leq f(x)$ for all $x \in [0, 1]$ and $n \in \mathbb{N}$. Suppose also that

$$\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = \int_0^1 f(x) \, dx.$$

Prove that there is a subsequence f_{n_k} which converges to f(x) almost everywhere.

- **2.** Find complex numbers a, b, c, d, with $ad bc \neq 0$, so that the Möbius transformation $f(z) := \frac{az+b}{cz+d}$ carries the imaginary axis to the circle whose radius is 2 and whose center is 3 = 3 + 0i.
- **3.** (a) Prove that for any Lebesgue measurable set $A \subset [0, 1]$, we have $\lim_{k \to \infty} \int_A \sin(kx) \, dx = 0$.
 - (b) Suppose that f(x) and g(x) are measurable functions on [0,1]. Prove that $h(x) = \max\{f(x), g(x)\}$ is also measurable.
- 4. Use the Residue Calculus to compute $I = \int_0^\infty \frac{1}{(x^4 + 4)(x^2 + 9)^9} dx$. To save arithmetic, you may define some **explicit** points $a_1, \ldots, a_L \in \mathbb{C}$ (what should *L* be?) and **explicit** functions h_1, \ldots, h_L , and then may express your answer explicitly in the form

$$I = \left[h_1(a_1) + \dots + h_L(a_L)\right] \cdot \text{Constant.}$$

(Do not bother to perform the function-evaluation).

- 5. Let f and g be continuous real valued functions on \mathbb{R} such that $\lim_{|x|\to\infty} f(x) = 0$ and $\int_{-\infty}^{\infty} |g(x)| dx < \infty$. Define the function h on \mathbb{R} by $h(x) = \int_{-\infty}^{\infty} f(x-y)g(y) dy$. Prove that $\lim_{|x|\to\infty} h(x) = 0$.
- **6.** Let *A* and *B* be two sets with the properties
 - (a) $A \cup B = \mathbb{N} := \{1, 2, 3, \ldots\},\$
 - (b) $A \cap B = \emptyset$,
 - (c) The cardinality of A, $Card(A) = +\infty$ and the cardinality of B, $Card(B) = +\infty$.

Prove that for any real number r > 0, there are two sequences $a_n \in A$ and $b_n \in B$ such that

$$\lim_{n \to \infty} \frac{b_n}{a_n} = r.$$