PhD Qualifying Exam: Analysis

You may solve all seven (7) Problems but only the best five (5) solutions will be counted as your grade.

1. Let $x_{1} \leq x_{2} \leq x_{3} \leq \cdots$ be a sequence of positive integers. A term x_{n} is called good if it can be written as sum of previous terms $x_{1}, x_{2}, \cdots, x_{n-1}$ (any of them can be repeated). Prove that there are at most finite terms which are not good.
Hint: you can use the following well-known result from number theory.
Theorem: For any positive integers $a_{1}, a_{2}, \cdots, a_{n}$, if d is the greatest common factor of $a_{1}, a_{2}, \cdots, a_{n}$, then for any $N \geq a_{1} a_{2} \cdots a_{n}$ with d divides N, there are nonnegative integers $b_{1}, b_{2}, \cdots, b_{n}$ such that $N=a_{1} b_{1}+a_{2} b_{2}+\cdots a_{n} b_{n}$.
2. For this problem assume that $q>1$ and let N_{q} be the unique integer satisfying $N_{q} \leq \frac{3}{2 \ln q}<N_{q}+1$.
(a) Show that

$$
\sum_{n=1}^{\infty} n^{3 / 2} q^{-n} \geq \int_{0}^{N_{q}} x^{3 / 2} q^{-x} d x
$$

Hint: find where the maximum of $f(x)=x^{2 / 3} q^{-x}$ is attained.
(b) Show that

$$
\int_{0}^{N_{q}} x^{3 / 2} q^{-x} d x \geq \frac{1}{(\ln q)^{5 / 2}} \int_{0}^{1} t^{3 / 2} e^{-t} d t .
$$

3. Show that the integral $\int_{0}^{\infty} \frac{\ln (x)}{\left(1+x^{2}\right)^{2}} d x$ converges and compute its value. Justify each step.
4. (a) Give a precise statement of the Cauchy integral formula.
(b) Let $D=\{z \in \mathbb{C}:|z|<1\}$, and suppose that $f: D \rightarrow \mathbb{C}$ is analytic with $M:=\sup _{z \in D}|f(z)|<\infty$. prove that for $0<\delta<1$,

$$
\sup _{|z|<1-\delta}\left|f^{\prime}(z)\right| \leq \frac{M}{\delta}
$$

(c) Show that if $\delta=\frac{1}{n}$ and $f(z)=z^{n}$, then

$$
\sup _{|z|<1-\delta}\left|f^{\prime}(z)\right| \geq \frac{c_{n}}{\delta}
$$

where $c_{n} \rightarrow e^{-1}$ as $n \rightarrow \infty$.
5. Let $[x]$ be the greatest integer which does not exceed x. Let $g(x)=(-1)^{[x]}$.
(a) Let f be a continuous function on $[0,1]$. Prove that $\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) g(n x) d x=0$.
(b) Let f be a Lebesgue integrable function on $[0,1]$. Prove that $\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) g(n x) d x=0$.
6. Let $f:(-1,1) \rightarrow \mathbb{R}$ be a nonconstant analytic function, that is, for any $x_{0} \in(-1,1)$, the Taylor expansion

$$
f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots
$$

converges to $f(x)$ for $x \in\left(x_{0}-a, x_{0}+a\right)$, where $a=\min \{|x-1|,|x+1|\}$. Suppose $x_{1}, x_{2}, \cdots, x_{n}, \cdots \in[0,1)$ is a sequence with $f\left(x_{n}\right)=0$. Prove that $\lim _{n \rightarrow \infty} x_{n}=1$.
7. Let $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a nonconstant smooth function (that is u is at least twice continuously differentiable) with

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad \text { for all }(x, y) \in \mathbb{R}^{2}
$$

Prove that for any $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$, there is $\left(x_{1}, y_{1}\right) \in \mathbb{R}^{2}$ with $u\left(x_{1}, y_{1}\right)>u\left(x_{0}, y_{0}\right)$.

