PhD Qualifying Exam: Analysis You may solve all seven (7) Problems but only the best five (5) solutions will be counted as your grade.

1. Let $x_1 \leq x_2 \leq x_3 \leq \cdots$ be a sequence of positive integers. A term x_n is called **good** if it can be written as sum of previous terms $x_1, x_2, \cdots, x_{n-1}$ (any of them can be repeated). Prove that there are at most finite terms which are not good.

Hint: you can use the following well-known result from number theory.

Theorem: For any positive integers a_1, a_2, \dots, a_n , if d is the greatest common factor of a_1, a_2, \dots, a_n , then for any $N \ge a_1 a_2 \cdots a_n$ with d divides N, there are nonnegative integers b_1, b_2, \dots, b_n such that $N = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n$.

- 2. For this problem assume that q > 1 and let N_q be the unique integer satisfying $N_q \leq \frac{3}{2 \ln q} < N_q + 1$.
 - (a) Show that

$$\sum_{n=1}^{\infty} n^{3/2} q^{-n} \ge \int_0^{N_q} x^{3/2} q^{-x} \, dx.$$

Hint: find where the maximum of $f(x) = x^{2/3}q^{-x}$ is attained.

(b) Show that

$$\int_0^{N_q} x^{3/2} q^{-x} \, dx \ge \frac{1}{(\ln q)^{5/2}} \int_0^1 t^{3/2} e^{-t} \, dt.$$

3. Show that the integral $\int_0^\infty \frac{\ln(x)}{(1+x^2)^2} dx$ converges and compute its value. Justify each step.

- 4. (a) Give a precise statement of the Cauchy integral formula.
 - (b) Let $D = \{z \in \mathbb{C} : |z| < 1\}$, and suppose that $f : D \to \mathbb{C}$ is analytic with $M := \sup_{z \in D} |f(z)| < \infty$. prove that for $0 < \delta < 1$,

$$\sup_{|z|<1-\delta} |f'(z)| \le \frac{M}{\delta}$$

(c) Show that if $\delta = \frac{1}{n}$ and $f(z) = z^n$, then

$$\sup_{|z|<1-\delta} |f'(z)| \ge \frac{c_n}{\delta},$$

where $c_n \to e^{-1}$ as $n \to \infty$.

- 5. Let [x] be the greatest integer which does not exceed x. Let $g(x) = (-1)^{[x]}$.
 - (a) Let f be a continuous function on [0, 1]. Prove that $\lim_{n \to \infty} \int_0^1 f(x)g(nx) dx = 0.$
 - (b) Let f be a Lebesgue integrable function on [0, 1]. Prove that $\lim_{n \to \infty} \int_0^1 f(x)g(nx) dx = 0$.

6. Let $f: (-1,1) \to \mathbb{R}$ be a nonconstant analytic function, that is, for any $x_0 \in (-1,1)$, the Taylor expansion

$$f(x_0) + f'(x_0)(x - x_0) + \frac{f'(x_0)}{2!}(x - x_0)^2 + \cdots$$

converges to f(x) for $x \in (x_0-a, x_0+a)$, where $a = \min\{|x-1|, |x+1|\}$. Suppose $x_1, x_2, \dots, x_n, \dots \in [0, 1)$ is a sequence with $f(x_n) = 0$. Prove that $\lim_{n \to \infty} x_n = 1$.

7. Let $u: \mathbb{R}^2 \to \mathbb{R}$ be a nonconstant smooth function (that is u is at least twice continuously differentiable) with

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad \text{for all} \ (x,y) \in \mathbb{R}^2$$

Prove that for any $(x_0, y_0) \in \mathbb{R}^2$, there is $(x_1, y_1) \in \mathbb{R}^2$ with $u(x_1, y_1) > u(x_0, y_0)$.