It will be marked the best 5 exercises.

1. Let X be a random variable with moment generating function: $M_X(t); -r < t < r$. Prove that: a)
 $$Pr(X \geq a) \leq \exp(-at)M_X(t), 0 < t < r$$
 and b)
 $$Pr(X \leq a) \leq \exp(-at)M_X(t), -r < t < 0.$$

2. Let $[x_1, \ldots, X_n]$ a random sample from the pdf
 $$f(x|\mu) = \exp[-(x - \mu)], \text{ where } -\infty < \mu < x < \infty.$$
 a) Does this pdf belongs to the Exponential Family? b) Find a complete sufficient statistics.

3. Consider the hierarchical model:
 $$X_i \sim \text{Normal}(\theta_i, \sigma^2), i = 1, \ldots, n, \text{ independent}$$
 and
 $$\theta_i \sim \text{Normal}(\mu, \tau^2), i = 1, \ldots, n, \text{ independent},$$
 where σ^2 and τ^2 are known. a) Calculate the marginal of the x_i's, i.e integrate the θ_i's b) Are the X_i's marginally independent?

4. a) Provide the assumptions needed about $f(x|\theta)$to prove that
 $$\int f(x|\theta)(\frac{\partial}{\partial \theta} \log f(x|\theta))^2dx = -\int f(x|\theta)(\frac{\partial^2}{\partial \theta^2} \log f(x|\theta))dx.$$
 b) When this holds, how can the Fisher Information may be defined?
5. Let Z and W iid, Normal Standard. Let $Y = \min(Z, W)$. a) Find the density of Y. b) Does this have any relationship with a Chi-Square?

6. Let $[X_1, \ldots, X_n]$, a sample from

$$f(x|\theta) = \frac{1}{\theta}, 0 \leq x \leq \theta, \theta > 0.$$

a) Estimate θ by Maximum Likelihood and by the method of moments.
b) Calculate means and variances of both estimators. Which is better?
c) assume a uniform prior for θ in the positive line. c.1) Compute the posterior density for θ. c.2) For Quadratic Loss what is the optimal Bayes Estimator?