UNIVERSITY OF PUERTO RICO RIO PIEDRAS CAMPUS DEPARTMENT OF MATHEMATICS

February 12, 2008 Statistics II Probability and

It will be marked the best 5 exercises.

1. Let X be a random variable with moment generating function: $M_X(t), -r < t < r$. Prove that: a)

$$Pr(X \ge a) \le \exp(-at)M_X(t), 0 < t < r$$

and b)

$$Pr(X \le a) \le \exp(-at)M_X(t), -r < t < 0.$$

2. Let $[x_1, \ldots, X_n]$ a random sample from the pdf

$$f(x|\mu) = \exp[-(x-\mu)]$$
, where $-\infty < \mu < x < \infty$.

- a) Does this pdf belongs to the Exponential Family? b) Find a complete sufficient statistics.
- 3. Consider the hierarchical model:

$$X_i \sim \text{Normal}(\theta_i, \sigma^2), i = 1, \dots, n, \text{independent}$$

and

$$\theta_i \sim \text{Normal}(\mu, \tau^2), i = 1, \dots, n, \text{independent},$$

where σ^2 and τ^2 are known. a) Calculate the marginal of the x_i 's, i.e integrate the θ_i 's b) Are the X_i 's marginally independent?

4. a) Provide the assumptions needed about $f(x|\theta)$ to prove that

$$\int f(x|\theta) \left(\frac{\partial}{\partial \theta} \log f(x|\theta)\right)^2 dx = -\int f(x|\theta) \left(\frac{\partial^2}{\partial \theta^2} \log f(x|\theta)\right) dx.$$

b) When this holds, how can the Fisher Information may be defined?

- 5. Let Z and W iid, Normal Standard. Let Y = min(Z, W). a) Find the density of Z². b) Does this have any relationship with a Chi-Square?
- 6. Let $[X_1, \ldots, X_n]$, a sample from

$$f(x|\theta) = 1/\theta, 0 \le x \le \theta, \theta > 0.$$

- a) Estimate θ by Maximum Likelihood and by the method of moments.
- b) Calculate means and variances of both estimators. Which is better?
- c) assume a uniform prior for θ in the positive line. c.1) Compute the posterior density for θ c.2) For Quadratic Loss what is the optimal Bayes Estimator?