UNIVERSITY OF PUERTO RICO RIO PIEDRAS CAMPUS DEPARTMENT OF MATHEMATICS

February 9, 2007

Probability and Statistics II

The best 5 exercises will be marked.

- The random variable Y is Student-t with d degrees of freedom, Y ~ f_S(y|d).
 - a) Which are the Mean and Variance of Y? When do they exist?
 - b) Which is the distribution of Y^2 ?
 - c) Show that: $\lim_{p\to\infty} f_S(y|p) \to Normal(y|0,1)$, at each y in the real line.
- 2. The sequence $y_1, y_2, ...$ is a vector of random variables that converges in probability to a constant a. Assume that $P(Y_i > 0) = 1$, for all i.
 - a) Prove that the sequences $W_i = \sqrt{Y_i}$ and $T_i = \frac{c}{Y_i}$ converge in probability.
 - b) Does $\frac{\sigma}{\sqrt{\sum y^2/n}}$ converge in probability to 1?
- 3. Let $Y_i \sim \text{Uniform}(0, \theta), i = 1, ..., n$.
 - a) Estimate θ by both the methods of Moments and Maximum Likelihood.
 - b) Calculate the means and variances of both estimators.
 - c) Assume a Uniform prior on the positive line for θ. For Quadratic Loss, which is the optimal Bayes Estimator?
- Assume the Linear Regression through the origin: Y_i = αx_i + ε_i, i = 1,...,n, where ε_i are iid N(0, σ²) where σ² is unknown.
 - a) Expose a sufficient statistics of dimension 2, for $[\alpha, \sigma^2]$.

- b) Find a Maximum Likelihood estimator for α and show that it is an unbiased estimator for α.
- c) Find the distribution of the Max. Likelihood Estimator of α.
- d) Assume that the prior is $p(\alpha, \sigma) = 1/\sigma$. Which is the Bayesian optimal estimator for quadratic loss for α ?
- 5. We have n Bernoulli θ random variables Y_1, \ldots, Y_n .
 - a) Does the variance of Y

 attain the Cramer-Rao Lower Bound? Is Y

 the best unbiased estimator for α?
 - b) Assume an Uniform prior for θ. For Quadratic Loss, which is the optimal Bayes estimator for θ?
- Assume Y₁,..., Y_n is a random sample from a N(θ, σ²), where θ, σ² are unknown. For each of the following hypothesis find the rejection region for an optimal test of Type 1 Error α = 0.05.
 - a) $H_0: \theta = 0; H_1: \theta \neq 0;$
 - b) $H_0: \theta \le 0 \text{ vs } H_1: \theta > 0$
 - c) In situation a) assume a prior like the following: under H₀, π(σ) = 1/σ and under H₁, the prior is p(θ,σ) = p(σ) × p(θ|σ) = ½ × N(θ|0, 2σ²). Write an expression for the Bayes Factor.