## UNIVERSITY OF PUERTO RICO RIO PIEDRAS CAMPUS DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

November 3, 2000

## Numerical Analysis

## SOLVE THREE OF THE FOLLOWING FIVE PROBLEMS

1.

- (a) Establish the contraction mapping theorem.
- (b) Derive Newton's method for the solution of  $F(x) = x^2 5 = 0$  and carry out the first 5 iterations.
- (c) Give the order of convergence of the method of b) (with proof).
- 2. Let A, E be real symmetric matrices. Denote by  $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$  and  $\mu_1 \leq \cdots \leq \mu_n$  the eigenvalues of A and A + E respectively.
  - (a) Prove that  $\lambda_k = \min_{V_k} \max\{x^T A x; x \in V_k, ||x||_2 = 1\}$  where  $V_k$  runs over all the k dimensional subspaces of  $\mathbb{R}^n$ .
  - (b) Prove that  $|\lambda_i \mu_i| \le ||E||_2$ ,  $1 \le i \le n$ .
  - (c) What conclusions do you draw about eigenvalues of real symmetric matrices?

- 3.
- (a) Let  $\Phi$  be a real-valued continuous function. Write down the divided difference interpolation formula for  $\Phi$  with three points  $t_k$ ,  $t_{k-1}$ , and  $t_{k-2}$  along with the remainder.
- (b) Compute  $\int_{t_k}^{t_k+h} (t-t_k)(t-t_k+h)dt$  and  $\int_{t_k}^{t_k+h} (t-t_k)(t-t_{k-1})(t-t_{k-2})dt$  where  $t_k = t_{k-1} + h = t_{k-2} + 2h$ .
- (c) Consider the initial-value problem

$$(P) \begin{cases} x'(t) = f(t, x(t)), & t \ge t_0 \\ x(t_0) = x_0 \end{cases}$$

Recast the problem as an integral equation and derive the numerical scheme

(A) 
$$\xi_{k+1} = \xi_k + \frac{h}{12} [23 \ f_k - 16 \ f_{k-1} + 5 \ f_{k-2}]$$

to approximate the solution of (P). (Here,  $f_j = f(t_j, x(t_j))$ 

- (d) For the method (A), define and estimate the local truncation error.
- 4. Consider the system AX = b where A is an  $n \times n$  real matrix and  $b \in \mathbb{R}^n$ 
  - (a) If

$$A = \begin{bmatrix} 2 & 4 & -7 \\ 3 & 6 & -10 \\ -1 & 3 & 6 \end{bmatrix}, \qquad b = \begin{pmatrix} 3 \\ 4 \\ 6 \end{pmatrix}$$

use Gaussian elimination (indicating all the steps) to solve the system.

- (b) In general provide the total number of operations to carry out needed Gaussian elimination process to solve the system. (operations = additions, subtractions, multiplications, divisions)
- (c) For the system in a) write down the Gauss-Jacobi method to solve it iteratively. Then taking

$$x^0 = \begin{pmatrix} -2\\1\\-1 \end{pmatrix}$$

carry out the first two interactions.

5. Consider the initial-value problem:

$$\left\{ \begin{array}{ll} y'(x) &= f(x, y(x)) \\ y(x_0) &= y_0 \end{array} \right\}$$
(1)

along with a one-step method to approximate its solution:

$$y_{n+1} = y_n + h \ F \ (x_n, y_n, h), n \ge 0$$
 (2)

- i. Give the function F for the modified Euler method.
- ii. Define (with precision) the local truncation error for the method (2).

Assume henceforth that the following conditions are satisfied:

$$F(x,y,0) = f(x,y) \tag{3}$$

$$F_h(x, y, 0) = \frac{1}{2} [f_x(x, y) + f_y(x, y)f(x, y)]$$
 (4)

where the subscript denotes the partial derivative with respect to the corresponding variable.

- iii. Show that the local truncation error has order 3.
- iv Show that the above conditions are satisfied by the modified Euler method.
- v. Give the general expression of an explicit Runge-Kutta method with two slopes.
- vi. Give the conditions on the parameters of the method in v) in order for the result in iii) to apply.