UNIVERSITY OF PUERTO RICO RIO PIEDRAS CAMPUS DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

May 1, 2003

Linear Programming

SOLVE EXACTLY THREE OUT OF THE FOLLOWING FIVE PROBLEMS:

1. Given a linear programming problem in standard form minimize $c_1x_1 + c_2x_2 + \cdots + c_nx_n$

subject to
$$A(x_1, x_2 \cdots x_n)^T = (b_1, b_2, b_m)^T$$

$$x_i \ge 0 \qquad 1 \le i \le n$$

Prove that: If there is a optimal feasible solution, there is a optimal basic feasible solution. (A is a real $m \times n$ matrix)

2. Solve the following problem.

minimize
$$-2x_1 + 4x_2 + 7x_3 + x_4 + 5x_5$$

subject to $-x_1 + x_2 + 2x_3 + x_4 + 2x_5 = 7$
 $-x_1 + 2x_2 + 3x_3 + x_4 + x_5 = 6$
 $-x_1 + x_2 + x_3 + 2x_4 + x_5 = 4$

$$x_1$$
 free, $x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0$

- 3. In the standard linear programming problem 1, suppose n > m and A has rank m. Suppose the first m columns of A is linearly independent. Let B be the $m \times m$ matrix consisted of the first m columns of A. So $A = [B, D], \overrightarrow{x} = (x_B, x_D), c = (c_B, c_D)$
- **2 points** a) What is the relative cost vector?
- **3 points** b) If we choose $\overrightarrow{x_0} = (B^{-1}\overrightarrow{b}, \overrightarrow{0_D})$ solution, how to determine if it is optimal?
- **5 points** c) If $\overrightarrow{x_0}$ is not optimal, how to determine which column of A to enter and which column of A to leave the basis?
- 4. For the problem

minimize
$$2x_1 + x_2 + 4x_3$$

subject to $x_1 + x_2 + 2x_3 = 3$
 $2x_1 + x_2 + 3x_3 = 5$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$

- **3 points** a) What is the dual problem.
- 7 points b) Note that $\lambda = [1,0]$ is feasible for the dual, starting with this λ . Solve the primal using the primal-dual algorithm.
- 5. Convert the following problem to a linear program in standard form

minimize
$$|x| + |y| + |z|$$

subject to $x + y \le 1$
 $2x + z = 3$