UNIVERSITY OF PUERTO RICO RIO PIEDRAS CAMPUS DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

November 20, 2002

Linear Programming

SOLVE EXACTLY THREE OUT OF THE FOLLOWING FIVE PROBLEMS:

1. Given a linear programming problem in the standard for

 $\begin{array}{l} \text{minimize } \mathbf{c}^T \mathbf{x} \\ \text{subject to } A \mathbf{x} = \mathbf{b} \\ \mathbf{x} \ge 0 \end{array}$

Prove that: If there is a feasible solution, there is a basic feasible solution. (A is a $m \times n$ matrix. **c** and **x** are n dimensional vector. **b** is a m-dimensional vector)

2. Using simplex method to solve to following linear programming problem.

maximize $3x_1 + x_2 + 3x_3$ subject to

 $2x_1 + x_2 + x_3 \le 2$ $x_1 + 2x_2 + 3x_3 \le 5$ $2x_1 + 2x_2 + x_3 \le 6$ $x_1 \ge 0 \quad x_2 \ge 0 \quad x_3 \ge 0$ 3. Consider the primal problem in standard form

$$\begin{array}{l} \text{minimize } \mathbf{c}^T \mathbf{x} \\ \text{subject to } A \mathbf{x} = \mathbf{b} \\ \mathbf{x} \ge 0 \end{array}$$

and its corresponding dual

minimize
$$\lambda^T \mathbf{x}$$

subject to $\lambda^T A < \mathbf{c}^T$

(2)

(1)

show that.

If \mathbf{x}_0 and λ_0 are feasible for (1) and (2), respectively, and if $\mathbf{c}^T \mathbf{x} = \lambda^T \mathbf{b}$, then \mathbf{x}_0 and λ_0 are optimal for their respective problem.

4. Consider the problem of operating a warehouse of cement. The warehouse has a capacity of C tons, there is a cost of r for holding one ton of cement for a month. Suppose the warehouse is originally empty and is required to be empty at the end of 3-month period. Suppose at the beginning of the i-th month, the stock level is x_i tons, u_i tons of cement is bought at the price of q_i per ton. At the end of the i-th month, s_i tons of cement is sold at the price of p_i per ton. To formulate this problem as a linear programming problem to maximize total profit for the 3-month period. 5. What is the dual of the problem

a) minimize $5x_1 - 3x_2$ subject to $2x_1 - x_2 + 4x_3 \le 4$ $x_1 + x_2 + 2x_3 \le 5$ $2x_1 - x_2 + x_3 \ge 1$ $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$

b) What is the solution of the dual?