University of Puerto Rico Río Piedras Campus Department of Mathematics

Functional Analysis I PhD Qualifying Exam

Monday, February 11, 2008

Each problem is worth 25 points. Only the best four solutions will be counted. The passing score is 60 points or higher. Time: 3 hours

Note. For a Hilbert space H with inner product $\langle .,. \rangle$, we denote by $\mathcal{B}(H)$ the algebra of all bounded linear operators on H. Recall that $H \oplus H$ is the Hilbert space consisting of all pairs (u, v).

- (1) (a) Let X be a Banach space. Show that if X^* (the dual of X) is separable, then X is separable.
 - (b) Prove that $l^{\infty}(\mathbb{N})$ is a nonseparable Banach space.
- (2) (a) Let X be a Banach space and $T \in \mathcal{L}(X)$ be a compact operator. Prove that if $\lambda \in \sigma(T) \setminus \{0\}$, then λ is an eigenvalue of T.
 - (b) Suppose that (T_n) is a sequence of bounded linear operators on a Banach space X such that there exists a bounded linear operator T such that $\lim_{n\to\infty} T_n x = Tx$ for all $x \in X$. Show that for any compact operator K on X, $\lim_{n\to\infty} ||T_n K TK|| = 0$.
- (3) (a) Let X be a normed space and $T: X \longrightarrow X$ be a linear map. Prove that if for any sequence (x_n) converging to 0, the sequence (Tx_n) is bounded, then T is continuous.
 - (b) Suppose T is a bounded linear operator on a Banach space X such that there exists $\lambda \in \mathbb{C}$ and a sequence x_n with $||x_n|| = 1$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} (Tx_n \lambda x_n) = 0$. Prove that $\lambda \in \sigma(T)$.
- (4) (a) Let X, Y be Banach spaces and T a linear map from X to Y. Prove that T is continuous from X endowed with the weak topology $\sigma(X, X^*)$ to Y endowed with the norm topology, then T has finite rank.

- (b) Find a Hilbert space H and a subspace F of X such that $H \neq F \oplus F^T$.
- (5) (a) Let $X = l^2(\mathbb{N})$ and $C = \{0\} \cup \{\frac{1}{n}e_n, n \in \mathbb{N}\}.$
 - (i) Prove that C is compact.
 - (ii) Is the convex hull of C compact?
 - (b) Prove that every weakly compact subset of a Banach space is norm bounded.
- (6) (a) Let H be a Hilbert space and (x_n) a sequence in H. Suppose that $x \in H$ and $\lim_{n\to\infty} \langle x_n, v \rangle = \langle x, v \rangle$ for all $v \in H$. Assume that $\lim_{n\to\infty} ||x_n|| = ||x||$. Prove that $\lim_{n\to\infty} x_n = x$ in H.
 - (b)