SOLVE EXACTLY THREE OUT OF THE FOLLOWING FIVE PROBLEMS:

1. a. What is the maximum number of regiones defined by \(n \) straight lines in the plane?

b. What is the maximum number of finite regiones defined by \(n \) straight lines in the plane?

2. Let \(x^m = x(x + 1) \cdots (x + m - 1) \)
 \[
 \nabla f(x) = f(x) - f(x - 1)
 \]
 what is \(\nabla (x^m) \)?

3. Which of the following statement is true?
 a. If \(f(N) = O(g(N)) \) then \(g(N) = o(f(N)) \)
 b. For \(k \) large enough, \(N = O(\log^k N) \)
 c. \(N \log N = O(N^{1 + \frac{1}{\log N}}) \)
 d. If \(f(N) = O(T(N)), g(N) = O(T(N)) \) and \(f(N) - g(N) = o(T(N)) \) then \(f(N) = O(g(N)) \) and \(g(N) = O(f(N)) \).
4. Show the result of inserting 16, 15, 14, 13, 12, 11 to the AVL tree

```
      4
     / \  \
    2   6
   / \  / \ \
  1  3 5  7
```

For each insertion, give the resulting tree, indicate you need to do single rotation, double rotation or no rotation.

5. Suppose we have 11 memories with address 0 through 10, if we use the hash function $h(x) = x \mod 11$ and the separate chaining algorithm for storing data, give an example of a data of size 6 that result a chain of length 6.