MS Qualifying Examination: Complex Analysis

Choose any three (3) of the following five (5) Problems.

Time for the Examination: Three (3) Hours

1. For each of the following functions, find (if possible) the power series expansion about \(z_0 \) and give (if possible) the radius of convergence.

 (a) (3 points) \(f(z) = \frac{1}{z} \) with \(z_0 = 2 \).

 (b) (3 points) \(g(z) = z + \pi \) with \(z_0 = 1 \).

 (c) (4 points) \(h(z) = \cosh^2(z) \) with \(z_0 = 0 \).

2. Classify all isolated singularities of the following functions. Calculate the residue at each singularity.

 (a) (3 points) \(f(z) = \frac{z^2}{(1 + z^2)^2} \).

 (b) (3 points) \(g(z) = \frac{\sinh(z)}{\sin(z)} \).

 (c) (4 points) \(h(z) = \frac{\sin(z)}{z^7} \).

3. (a) (4 points) Suppose that \(f \) and \(g \) are entire functions, and that \(|f(z)| \leq |g(z)| \) for all \(z \in \mathbb{C} \). Show that if \(z = 0 \) is the only zero of \(g \), then there is a constant \(C \) such that \(f(z) = Cg(z) \) for all \(z \in \mathbb{C} \).

 (b) (6 points) Let \(f \) be an analytic function on \(\mathbb{D} := \{ z \in \mathbb{C} : |z| < 1 \} \) and suppose that \(|f(z)| \leq 1 \) for all \(z \in \mathbb{D} \). Show that \(|f'(0)| \leq 1 \).

4. (a) (2 points) State a version of the residue theorem.

 (b) (2 points) Find the residues of the function \(f(z) = \frac{e^{iz}}{(z - 1)^2 + 4} \) at each isolated singularity.

 (c) (6 points) Evaluate the indefinite integral

 \[\int_{-\infty}^{\infty} \frac{\cos(x)}{(x - 1)^2 + 4} \, dx. \]

5. (a) (4 points) Let \(f \) be an entire function with \(\text{Re}(f(z)) \geq 1 \) for all \(z \in \mathbb{C} \). Prove that \(f \) is constant.

 (b) (3 points) Show that if \(f \) and \(g \) are analytic functions on a region \(G \) such that \(fg \) is analytic then either \(f \) is constant or \(g \equiv 0 \).

 (c) (3 points) Find the maximal domain of analyticity of the function \(f(z) = \frac{1}{2i} \log \left(\frac{1 + iz}{1 - iz} \right) \).