Universidad de Puerto Rico Departamento de Matemáticas Recinto de Río Piedras

Analisis Complejo

8 de Febrero 2006

Qualifying Examination Master Level

Choose any three of the following five Problems. All the Problems have the same number of Points (10 Points).

Time for the Examination: Three (3) Hours

- 1. (a) (5 points). State and prove the Theorem of Goursat.
 - (b) (5 points). Consider the function $u : \mathbb{C} \to \mathbb{R}$ defined by

$$u(x+iy) := 1 + x + e^{-2y}\cos(2x), \qquad (x,y) \in \mathbb{R}^2.$$

- (i) Prove that the function u is harmonic on \mathbb{C} .
- (ii) Find a harmonic function $v: \mathbb{C} \to \mathbb{R}$ verifying the Cauchy-Riemann equations

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$.

2. (a) (5 points). Show that any holomorphic function $f : \Omega \to \mathbb{C}$, defined on an open set $\Omega \subset \mathbb{C}$, can be expanded as a power series

$$\sum_{n=0}^{\infty} a_n (z-a)^n$$

which converges absolutely in the greatest open disc B(a, r) centered at $a \in \Omega$ and included in Ω .

(b) (5 points). Let $\Omega \subset \mathbb{C}$ be an open set and $f : \Omega \to \mathbb{C}$ be a complex valued function with real and imaginary parts $u : \Omega \to \mathbb{R}$ and $v : \Omega \to \mathbb{R}$ (that is f(z) = u(x, y) + iv(x, y), $z = x + iy \in \mathbb{C}$). Show that f is complex differentiable at $z_0 = (x_0, y_0)$ if and only if u and v are real differentiable at z_0 and

$$\frac{\partial u(x_0, y_0)}{\partial x} = \frac{\partial v(x_0, y_0)}{\partial y} \quad \text{and} \quad \frac{\partial u(x_0, y_0)}{\partial y} = -\frac{\partial v(x_0, y_0)}{\partial x}$$

3. (a) (**5 points**). Let

$$I(r) := \int_{\gamma} \frac{e^{iz}}{z} \, dz,$$

where $\gamma : [0, \pi] \to \mathbb{C}$ is defined by $\gamma(t) := re^{it}$. Show that

$$\lim_{r \to \infty} \int_{\gamma} \frac{e^{iz}}{z} \, dz = 0$$

(b) (2 points). Let $\Omega := \{z \in \mathbb{C} : |z| < 4\}$ and let h be an analytic function on Ω such that $|h(z)| \le 1$ for all $z \in \Omega$ with |z| = 3. Prove that

$$|h''(z)| \leq \frac{3}{4}$$
 for all $z \in \Omega$ with $|z| \leq 1$

- (c) (3 points). Consider the function $g : \mathbb{C} \setminus \{-1, 2\} \to \mathbb{C}$ defined by $g(z) := \frac{3}{(z+1)(z-2)}$. Give the Laurent expansion of g at the point $z_0 = 1$ which converges at the point z = i.
- 4. (a) (5 points). Show that for a > 1,

$$\int_0^\pi \frac{1}{a + \cos(\theta)} \ d\theta = \frac{\pi}{\sqrt{a^2 - 1}}.$$

- (b) (5 points). Consider the function $f : \mathbb{C} \setminus \{-1, 1\} \to \mathbb{C}$ defined by $f(z) := \frac{2 \exp(z)}{z^2 1}$.
 - (i) Find all singularities z_0 of f and determine its nature.
 - (ii) Calculate the Residues of f at each point z_0 of (i).
 - (iii) Let $\gamma : [0,1] \to \mathbb{C}$ be the path defined by $\gamma(t) := -1 + 3\exp(2\pi i t)$. Calculate $\int_{\gamma} f(z) dz$.
- 5. (a) (5 points). Let $f : \Omega \to \mathbb{C}$ be a holomorphic function defined on the open subset $\Omega \subset \mathbb{C}$. For any $a \in \Omega$ define the greatest star sharped subset $\Omega_a \subset \Omega$. Show that it is open and show that f has a primitive (antiderivative) on Ω_a .
 - (b) (5 points). Let f be an entire function and let $p : \mathbb{C} \to \mathbb{C}$ be a polynomial of grad n. Prove that: (i) If

$$|f(z)| \le C \cdot |p(z)|, \quad z \in \mathbb{C},\tag{1}$$

for some constant C > 0, then there exists a constant $\lambda \in \mathbb{C}$ such that $f = \lambda p$.

(ii) If there exist two constants R > 0 and C > 0 such that (1) is satisfied for all $z \in \mathbb{C}$ with $|z| \ge R$, then f is a polynomial of grad $\le n$.