Qualifying Examination Complex Variables

Solve any three of the following five problems

1. Let (c_n) be a sequence of complex numbers.

- (a) Give an example where the series $\sum_{n=0}^{\infty} c_n$ diverges but $\lim_{n \to \infty} nc_n = 0$. From now on, we assume that the power series $\sum_{n=0}^{\infty} c_n z^n$ has radius of convergence R = 1 and we set $f(z) = \sum_{n=0}^{\infty} c_n z^n$ for |z| < 1. We further assume that $\lim_{z \to 1} f(z) = s$ and $\lim_{n \to \infty} nc_n = 0$.
- (b) Let |z| < 1 and set $n = \left[\frac{1}{1-|z|}\right]$ (where [x] is the greatest integer less than or equal to x). Let $S_1 = \sum_{k=n+1}^{\infty} c_k z^k$, $S_2 = \sum_{k=0}^{n} c_k (1-z^k)$. Verify that $S_1 - S_2 = f(z) - \sum_{k=0}^{n} c_k$ and that if $\varepsilon > 0$ is given, then for n large enough, $|S_1| < \varepsilon$.
- (c) Show that if (b_n) is a sequence of complex numbers with $\lim_{n \to \infty} b_n = 0$, then $\lim_{n \to \infty} \frac{b_0 + b_1 + \dots + b_n}{n+1} = 0$.
- (d) Verify that for |z| < 1, $|1 z^n| \le n|1 z|$.
- (e) Let A > 0 and suppose that $\frac{|1-z|}{1-|z|} \le A$. Show that $|S_2| \le \frac{A}{n} \sum_{k=0}^{n} |kc_k|$ and conclude that $\lim_{n \to \infty} \sum_{k=0}^{n} c_k = s$.

- 2. We let $D = \{z \in C, |z| < 1\}$ be the unit disk in C Suppose f is a function holomorphic in D such that f(0) = 0 and $|f(z)| \le 1$ in D.
 - (a) i. Prove that $|f(z)| \le |z|$ in D.
 - ii. Suppose there exists $z_0 \in D$ such that $|f(z_0)| = 1$. Prove that there exists $\alpha \in \mathbb{R}$ such that $f(z) = e^{i\alpha}z$ for all $z \in D$.

(b) Compute
$$\int_0^\infty \frac{x^2}{1+x^4} dx$$
.

- 3. (a) Suppose f is continuous on a simply connected domain $D \subset C$ and $\int_{\gamma} f(z)dz = 0$ for each triangle Δ with boundary γ such that Δ and its interior are in D. Prove that f is holomorphic in D.
 - (b) Suppose f is holomorphic on $D = \{z \in \mathbb{C}, |z| < 1\}$ and $|f(z)| \le 1$ on D. Prove that $|f'(0)| \le 1$.

(c) Compute the integral
$$\int_{-\infty}^{\infty} \frac{\sin x}{x^2 + x + 1} dx$$
.

- 4. (a) We let $D^* = \{z \in \mathbb{C}, 0 < |z| < 1\}$. Suppose f is holomorphic in D^* and for every circle $\gamma_r : \{|z| = r\}$ with 0 < r < 1, we have $\int_{\gamma} f(z)dz = 0$. Does it follow that f has a holomorphic extension to $D = D^* \cup \{0\}$?
 - (b) Compute that integral $\int_0^\infty \frac{\cos ax}{1+x^2} dx$ where $a \in \mathbb{R}$ is given.
 - (c) Prove that the function f defined by $f(z) = \sum_{n=1}^{\infty} e^{-n} \sin \sqrt{n} z$ an entire function.
- 5. (a) Let γ be a closed rectifiable curve in C. Define $n(\gamma; a) = \frac{1}{2\pi} \int_{\gamma} (z a)^{-1} dz$ for a not on γ . Prove that on each (connected) component of $\Omega := \mathbb{C} \setminus \gamma$, the function $n(\gamma; .)$ is constant.
 - (b) Compute $\int_0^\infty \frac{1}{(a^2 + x^2)^2} dx$ where a > 0.